Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Technical Paper

Visualization Techniques for Single Channel DPF Systems

2007-04-16
2007-01-1126
New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vaporized adhesive (Cynoacrylate) may allow analysis of the layer with new methods.
Technical Paper

Optimizing the Advanced Ceramic Material for Diesel Particulate Filter Applications

2007-04-16
2007-01-1124
This paper describes the application of pore-scale filtration simulations to the advanced ceramic material (ACM) developed for use in advanced diesel particulate filters. The application required the generation of a three-dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single-channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early investigation efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for diesel particulate filter (DPF) applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials.
Technical Paper

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-03-05
2001-01-0257
This paper describes the reduction of cyclic combustion variations in spark-ignited engines, especially under idle conditions in which the air-fuel mixture is lean of stoichiometry. Under such conditions, the combination of residual cylinder gas and parametric variations (such as variations in fuel preparation) gives rise to significant combustion instabilities that may lead to customer-perceived engine roughness and transient emissions spikes. Such combustion instabilities may preclude operation at air-fuel ratios that would otherwise be advantageous for fuel economy and emissions. This approach exploits the recognition that a component of the observed combustion instability results from a noise-driven, nonlinear deterministic mechanism that can be actively stabilized by small feedback control actions which result in little if any additional use of fuel.
Technical Paper

High Frequency Measurements of Pressure and Temperature Fluctuations in an Automotive Exhaust System During Steady State and Transient Driving Conditions

2001-03-05
2001-01-0227
Environmental concerns have prompted increasingly stringent government legislation regulating automotive fuel economy and emissions. Recent rules not only mandate lower total emissions, but also require on-board diagnostics which monitor the vehicle exhaust systems. In order to satisfy these requirements, new and improved exhaust gas sensors are continually being developed to serve as part of the engine feedback control and emissions monitoring systems. Before we can properly design these new sensors, we must attempt to better understand the harsh environment in which they will operate. In this paper, we examine the high frequency nature of pressure fluctuations found in the exhaust system for both steady state and transient engine operating conditions. We also investigate temperature fluctuations, but restrict these measurements to the sampling environment found in the packaging of a Ford Si-based microcalorimeter.
Technical Paper

Characterization of Acid Sites in Ion-exchanged and Solid State-exchanged Zeolites

2001-09-24
2001-01-3571
Brønsted acidity of solution ion-exchanged and solid-state exchanged zeolites was compared for NaY, BaY, CaY, NaX, and CaX zeolites. These materials were chosen because they all exhibit catalytic activity in SCR of NOx in combination with a non-thermal plasma. Brønsted acidity was characterized qualitatively with retinol as an indicator dye. Our results show that the solid-state exchange using a chloride salt creates zeolites with lower acidity than zeolites obtained by conventional solution ion-exchange. NO2 adsorption was also found to create a significant quantity of acid sites at room temperature and a slight increase in acidity at 200°C. We speculate that the acid sites created by NO2 adsorption, because of their vicinity to metal cation sites in the zeolite, may lead to preferential reactions that lead to NOx reduction. BaY made by solution ion-exchange and BaY made by solid-state exchange using a chloride salt were tested for NOx reduction in a plasma-catalyst reactor system.
Technical Paper

Application of Urea SCR to Light-Duty Diesel Vehicles

2001-09-24
2001-01-3623
Diesel vehicles have significant advantages over their gasoline counterparts including a more efficient engine, higher fuel economy, and lower emissions of HC, CO, and CO2. However, NOx control is more difficult on a diesel because of the high O2 concentration in the exhaust, making conventional three-way catalysts ineffective. The most promising technology for continuous NOx reduction onboard diesel vehicles is Selective Catalytic Reduction (SCR) using aqueous urea. Recent work with urea SCR has involved aftertreatment for the 1.2L DIATA common-rail diesel engine. This engine was used in Ford's hybrid-electric vehicle, the Prodigy, which was developed under the PNGV (Partnership for a New Generation of Vehicles) program. An emission control system consisting of a diesel particulate filter followed by an underbody SCR system was used successfully to meet ULEV emission standards (0.2 g/mi NOx, 0.04 g/mi particulate matter (PM)).
Technical Paper

Lattice-Boltzmann Diesel Particulate Filter Sub-Grid Modeling - A Progress Report

2003-03-03
2003-01-0835
Aftertreatment modeling capabilities are an important part of the diesel engine manufacturer's efforts to meet the quickly approaching EPA 2007 heavy-duty emissions regulations. A critical, yet poorly understood, component of particulate filter modeling is the representation of the soot oxidation rate. This term directly influences most of the macroscopic phenomenon of interest, including filtration efficiency, heat transfer, back pressure, and filter regeneration. Intrinsic soot cake properties such as packing density, permeability and heat transfer coefficients remain inadequately characterized (1). The work reported in this paper involves subgrid modeling techniques which may prove useful in resolving these inadequacies. The technique involves the use of a lattice Boltzmann modeling approach. This approach resolves length scales which are orders of magnitude below those typical of a standard computational fluid dynamics (CFD) representation of an aftertreatment device.
Technical Paper

Optimal SCR Control Using Data-Driven Models

2013-04-08
2013-01-1573
In this paper, we develop a method for optimizing urea dosing to minimize the downstream readings from a production NOx sensor that has cross-sensitivity to ammonia. This approach favors high NOx conversion and reduced ammonia slip. The motivation for this work is to define a process to identify the maximum selective catalytic reduction SCR performance bounds for a given drive cycle. The approach uses a model structure that has a closed-form optimal solution for the urea injection. Every aftertreatment system has its own, unique model, which must be identified and validated. To demonstrate the approach, a model is identified and validated using experimental SCR input/output NOx sensor data from a 2010 Cummins 6.7L ISB production engine. The optimal control law is then simulated and its performance compared against the simulated performance of the SCR using experimental data for its inlet conditions.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

2000-10-16
2000-01-2899
Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Technical Paper

Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

2010-04-12
2010-01-1171
Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NO and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR catalyst. Several bench-reactor tests to understand the inhibition of NO oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted.
X