Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling an Ammonia SCR DeNOx Catalyst: Model Development and Validation

2004-03-08
2004-01-0155
A 1-D numerical model describing the ammonia selective catalytic reduction (SCR) de-NOx process has been developed based on data measured on a laboratory microreactor for a vanadia-titania washcoated catalyst system. Kinetics for various NH3-NOx reactions were investigated, as well as those for ammonia, CO and hydrocarbon oxidation. The model has been successfully validated against engine bench measurements, over light-off and ESC tests, under a wide range of conditions, e.g. flow rate, temperature, NO2/NO ratio, and ammonia injection rate. A very good agreement between the experimental data and the model has been achieved. The model has now been used to predict the effect of NO2/NO ratio on NOx conversion, and the effect of different ammonia injection rates on the efficiency of the SCR process.
Technical Paper

Development and Validation of a One-Dimensional Computational Model of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System

2005-04-11
2005-01-0954
Diesel emissions legislation continues to tighten around the world, and Particulate Matter (PM) emissions are currently the focus of much attention. Diesel PM can be controlled using Diesel Particulate Filters (DPFs), which can effectively reduce the level of carbon (soot) emissions to ambient background levels. In the Heavy Duty Diesel (HDD) area, the Continuously Regenerating Trap (CRT®) [1] has been widely applied in the retrofit market. This system will henceforth be referred to as the Continuously Regenerating DPF (CR-DPF). There are currently over 100,000 of these systems in use in retrofit applications worldwide. This system comprises a specially formulated Diesel Oxidation Catalyst (DOC) upstream of a DPF; the NO2 generated by the DOC is used to combust the carbon collected in the DPF at low temperatures. A model describing the performance of the CR-DPF has been developed.
X