Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Journal Article

The Effect of Engine, Axle and Transmission Lubricant, and Operating Conditions on Heavy Duty Diesel Fuel Economy. Part 1: Measurements

2011-08-30
2011-01-2129
It is expected that the world's energy demand will double by 2050, which requires energy-efficient technologies to be readily available. With the increasing number of vehicles on our roads the demand for energy is increasing rapidly, and with this there is an associated increase in CO₂ emissions. Through the careful use of optimized lubricants it is possible to significantly reduce vehicle fuel consumption and hence CO₂. This paper evaluates the effects on fuel economy of high quality, low viscosity heavy-duty diesel engine type lubricants against mainstream type products for all elements of the vehicle driveline. Testing was performed on Shell's driveline test facility for the evaluation of fuel consumption effects due to engine, gearbox and axle oils and the variation with engine operating conditions.
Technical Paper

Mechanical Testing - Still Necessary!

2007-04-16
2007-01-1768
Over the last decades, the use of computers has become an integral part of the engine development process. Computer-based tools are increasingly used in the design process, and especially the layout of the various subsystems is conducted by means of simulation models. Computer-aided engineering plays a central role e.g. in the design of the combustion process as well as with regards to work performed in the area of engine mechanics, where CFD, FEM, and MBS are applied. As a parallel trend, it can be observed that various engine performance characteristics such as e.g. the specific power output and the power-to-weight ratio have undergone an enormous increase, a trend which to some extent counteracts the increase in safety against malfunction and failure. As yet, due to the constant need for further optimization, mechanical testing and verification processes have not become redundant, and it is assumed that they will remain indispensable for the foreseeable future.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

2002-11-19
2002-01-3456
The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

A Modern Approach to Face Current and Future Testing Needs as Part of the Entire Development Process for Vehicles and Engines

2003-03-03
2003-01-1026
Nowadays lead times and quality demands for the development of entire vehicles, or components for them, require new methods, which must be supported by new tools. This paper describes the key demands to modern test cell equipment as well as solutions for the area of test cell management systems. An outlook to the evolution of the way of testing and the role of a test cell in the entire development process is given to discuss the needs and possible solutions of the future.
Technical Paper

A Study of Diesel Fuel Injector Deposit Effects on Power and Fuel Economy Performance

2017-03-28
2017-01-0803
Injector cleanliness is well characterised in the literature [1,2,3,4] as a key factor for maintained engine performance in modern diesel cars. Injector deposits have been shown to reduce injector flow capacity resulting in power loss under full load; however, deposit effects on fuel economy are less well characterised. A study was conducted with the aim of developing an understanding of the impact of diesel injector nozzle deposits on fuel economy. A series of tests were run using a previously published chassis dynamometer test method. The test method was designed to evaluate injector deposit effects on performance under driving conditions more representative of real world driving than the high intensity test cycle of the industry standard, CEC DW10B engine test, [1]. The efficacy of different additive levels in maintaining injector cleanliness and therefore power and fuel economy was compared in a light duty Euro 5 certified vehicle.
Technical Paper

The Application of Telematics to Demonstrate Octane Quality Effects in Real World Driving

2015-09-01
2015-01-1953
Enhanced octane is one route to fuels differentiation where associated vehicle performance benefits are generally measured under controlled wide-open throttle tests on a chassis dynamometer. The combined availabilities of relevant ECU data via OBD and telematic loggers present new opportunities to assess such fuel benefits on the road in normal real-world driving environments. A novel methodology is described in this paper which utilised the remote logging of key engine EOBD data from a fleet trial and the results successfully demonstrated significant octane-derived benefits in many vehicles throughout normal mixed-roads driving. The availability and the reliability of telematic loggers mean that the method could be implemented in a scalable way as a complementary approach in addition to conventional laboratory vehicle testing.
X