Refine Your Search

Topic

Author

Search Results

Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Real-time Determination of Driver's Driving Behavior during Car Following

2015-04-14
2015-01-0297
This paper proposes an approach that characterizes a driver's driving behavior and style in real-time during car-following drives. It uses an online learning of the evolving Takagi-Sugeno fuzzy model combined with the Markov model. The inputs fed into the proposed algorithm are from the measured signals of on-board sensors equipped with current vehicles, including the relative distance sensors for Adaptive Cruise Control feature and the accelerometer for Electronic Stability Control feature. The approach is verified using data collected using a test vehicle from several car-following test trips. The effectiveness of the proposed approach has been shown in the paper.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Brake Dynamometer Test Variability Part 2- Description of the Influencing Factors

2011-09-18
2011-01-2374
The ISO TC22/SWG2 - Brake Lining Committee established a task force to determine and analyze root causes for variability during dynamometer brake performance testing. SAE paper 2010-01-1697 “Brake Dynamometer Test Variability - Analysis of Root Causes” [1] presents the findings from the phases 1 and 2 of the “Test Variability Project.” The task force was created to address the issue of test variability and to establish possible ways to improve test-to-test and lab-to-lab correlation. This paper presents the findings from phase 3 of this effort-description of factors influencing test variability based on DOE study. This phase concentrated on both qualitative and quantitative description of the factors influencing friction coefficient measurements during dynamometer testing.
Journal Article

Considerations in HMI Design of a Reverse Braking Assist (RBA) System

2013-04-08
2013-01-0720
The Reverse Braking Assist (RBA) feature is designed to automatically activate full braking in a backing vehicle. When this feature activates, a backing vehicle is suddenly stopped or may slide to a stop. During this process, an understanding of the driver's behavior may be useful in the design of an appropriate human-machine-interface (HMI) for the RBA. Several experimental studies were done to examine driver behavior in response to an unexpected and automatic braking event while backing [1]. Two of these studies are reported in this paper. A 7-passenger Crossover Utility Vehicle was fitted with a rear-view camera, a center-stack mounted LCD screen, and ancillary recording devices. In the first study, an object was suddenly placed in the path of a backing vehicle. The backing vehicle came to a sudden and complete stop. The visual image of the backing path on the LCD prominently showed that an obstacle was present in the backing path of the vehicle.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

Archetypal Vehicle Dynamics Model for Resistance Rollover Prediction

2010-04-12
2010-01-0715
Nowadays is a common sense the importance of the CAE usage in the modern automotive industry. The ability to predict the design behavior of a project represents a competitive advantage. However, some CAE models have become so complex and detailed that, in some cases, one just can not build up the model without a considerable amount of information. In that case simplified models play an important role in the design phase, especially in pre-program stages. This work intends to build an archetypal vehicle dynamics model able to predict the rollover resistance of a vehicle design. Through the study of a more complex model, carried out in Adams environment, it was possible to identify the key degrees of freedom to be considered in the simplified model along with important elements of the suspension which are also important design factors.
Technical Paper

Ford Motor Companys' new Torqshift 6 Automatic Transmission for Super Duty F250-F550 Truck

2010-04-12
2010-01-0859
Ford developed the 6R140 TorqShift six-speed transmission for the Ford F-series SuperDuty trucks. The 6R140 transmission is specifically designed to manage the increased torque produced by the 6.7-liter Power Stroke V-8 turbocharged diesel engine. It is also matched with the 6.2-liter V-8 gasoline engine. By design, the new 6R140 transmission seamlessly delivers the enormous low-rpm torque produced by the new diesel engine and efficiently manages the higher rpm of the new gasoline engine.
Technical Paper

Exhaust Gas Temperature Determination with HEGO Parameters

2010-04-12
2010-01-1303
Exhaust gas temperature is often measured with a device such as thermocouple or RTD (Resistance Temperature Detector). An alternative method to determine the gas temperature would be to use an existing gas sensor heating mechanism to perform as a temperature sensor. A planar type FLOH (Fast Light Off HEGO-Heated Exhausted Gas Oxygen) sensor under transient vehicle speed/load conditions is suited to this function and was modeled to predict the exhaust gas temperature. The numerical input to the model includes exhaust flow rate, heater voltage, and heater current. Laboratory experiments have been performed to produce an equation relating the resistance of the heater and the temperature of the sensor (heater), which provides a method to indirectly determine HEGO sensor temperature.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Gear Whine Improvements for an Automatic Transmission through Design Retargeting and Manufacturing Variability Reduction

2001-04-30
2001-01-1505
Gear whine in 1st gear for an automatic transmission that has been in production for nearly thirty years was identified as an NVH issue. Due to advances in vehicle level refinement, and reduction of other masking noises, the automatic transmission gear whine became an issue with the customer. Since the transmission was already in production, the improvements had to be within the boundaries of manufacturing feasibility with existing equipment to avoid costly and time consuming investment in new machines. The approach used was one of identifying optimum values of existing gear parameters to provide a reduction in passenger compartment noise. The problem was in a light truck application. Objective noise measurements were recorded for 10 transmissions from more than 50 driven in vehicles. The transmissions were disassembled and the gears inspected.
Technical Paper

Analysis of Instabilities and Power Flow in Brake Systems with Coupled Rotor Modes

2001-04-30
2001-01-1602
Recent investigations by others have indicated that the dynamic response of automotive brake rotors in the squeal frequency range involves the classic flexural modes as well as in-plane motion. While the latter set creates primarily in-plane displacements, there is coupling to transverse displacements that might produce vibrational instabilities. This question is investigated here by analyzing a modal model that includes two modes of the rotor and two modes of the pad and caliper assembly. Coupling between in-plane and transverse displacements is explicitly controlled. Results from this model indicate that the coupling does create vibrational instabilities. The instabilities, whose frequencies are in the squeal range, are characterized by power flow through the transverse motion of the rotor.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Hybrid Powertrain with an Engine-Disconnecting Clutch

2002-03-04
2002-01-0930
Several types of hybrid-electric vehicles have been developed at Ford Research Laboratory. Among the parallel hybrid systems with a single electric motor, two types were studied. In the first type, the electric motor was attached directly to the crankshaft (mild hybrid) [1], to enable the engine start-stop and regeneration functions. In the second type (full hybrid) the electric motor was connected to the engine through the use of a clutch to allow electric launch of the vehicle and pure electric driving at low speeds. The full hybrid powertrain described in this paper uses a more powerful electric motor for enhanced regenerative braking and engine power assist. An engine-disconnecting clutch saves energy during both the electric propulsion and during vehicle braking. When the clutch is disengaged the engine is shut-off, which eliminates the energy otherwise spent on motoring the engine during electric propulsion.
Technical Paper

Understanding the Interaction Between Passive Four Wheel Drive and Stability Control Systems

2002-03-04
2002-01-1047
The purpose of this paper is to describe and define the interaction between a brake based stability control system and a passive coupler (viscous coupling unit) inside the transfer case of a Four-Wheel Drive (4WD) vehicle. This paper will focus on the driveline system and the impact that a stability control system can have on it. It will provide understanding of torque transfer on 4WD vehicles that are equipped with a brake based stability control system and use this knowledge to recommend ways to reduce the undesirable torque transfer interaction between the two systems. These recommendations can be readily applied to future 4WD/AWD vehicles to improve compatibility between the two systems.
Technical Paper

Using Variable Reluctance Sensors for Differential Odometer Applications

1991-10-01
912788
Applying a variable reluctance sensor to a differential odometer application requires special considerations. Due to widespread use in anti-lock brake systems and the need for cost effective designs, variable reluctance sensors have advantages over more expensive active sensors. Unfortunately, both mechanical and electrical parameters can adversely affect the output of a variable reluctance sensor. The output signal varies with the rate of change of the flux, mechanical spacing and magnetic source variation. At low vehicle speeds the output signal, which is a function of the rate of change of the flux, tends to approach zero and signal-to-noise ratios become significant. Since changes in vehicle direction typically occur at lower speeds, differential odometers require good low speed performance. In addition to speed, differential odometers rely on two sensors, therefore sensor variation must also be compensated for.
Technical Paper

The Development and Application of Solid State Relays for Automotive Applications

1992-02-01
920540
The utilization of electro-mechanical relays in traditional automotive applications such as power door lock systems and vehicle lighting has been easily justified on the basis of performance, cost and reliability. However, with the advance of new vehicle systems, we find that new standards for the basic power switch must be established. When the control of anti-lock brake or suspension systems is to be considered, standards for performance and reliability must rise. This paper will examine a high current Solid State Relay (SSR) which has been developed for application within critical automotive systems. The design approach, technology utilized, and operating characteristics, as well as application justification will be discussed.
X