Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

Effect of Cylinder Head and Engine Block Temperature on HC Emissions from a Single Cylinder Spark Ignition Engine

1995-10-01
952536
A single-cylinder, two-valve engine was operated with independent cooling circuits for the engine block and cylinder head to investigate the effect of temperature distribution on HC emissions. The goal was to understand and quantify the mechanisms responsible for decreased HC emissions at elevated temperatures. Tests were run at a typical road load condition using two different fuels (a 97 RON blend and isopentane - to eliminate liquid fuel and oil layer absorption effects). The total HC emissions (97 RON fuel) decreased by 15-20% with an increase in either the cylinder head or engine block coolant temperature from 71 to 110 °C. When operating with isopentane the HC emissions decreased by 15-20% with an increase in the engine block temperature from 71 to 110 °C but were essentially unaffected by cylinder head temperature. This indicates that the cylinder head temperature primarily influenced the HC emissions from liquid fuel effects.
Technical Paper

A Software Program for Carrying Out Multi-Purpose Exhaust Composition Calculations

1997-02-24
970749
It is frequently useful to calculate the theoretical composition of the major components of vehicle exhaust. A software program has been written in Basic (or Quick Basic) which allows the convenient calculation of volume percents of CO, CO2, O2, H2, and H2O from fuel composition (H/C and O/C ratios), the water content (dew point) of the combustion air, and a chosen stoichiometry (air/fuel ratio). The program considers the Water Gas Shift reaction and the production of hydrogen under fuel rich conditions. The program is valid for both standard gasolines and oxygenated blends. Vehicle emissions data, collected to compare values calculated by the program with actual experimentally determined values from vehicle exhaust, show good agreement for measurements made at a series of air/fuel ratios ranging from lambda of 0.85-1.2.
X