Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort

2010-04-12
2010-01-1205
Virtual simulation of passenger compartment climatic conditions is becoming increasingly important as a complement to the wind tunnel and field testing to achieve improved thermal comfort while reducing the vehicle development time and cost. The vehicle cabin is subjected to various thermal environments. At the same time many of the design parameters are dependent on each other and the relationship among them is quite complex. Therefore, an experimental parametric study is very time consuming. The present 3-D RadTherm analysis coupled with the 3-D CFD flow field analysis takes into account the geometrical configuration of the passenger compartment which includes glazing surfaces and pertinent physical and thermal properties of the enclosure with particular emphasis on the glass properties. Virtual Thermal Comfort Engineering (VTCE) is a process that takes into account the cabin thermal environment coupled with a human physiology model.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Numerical Study of an I4 Engine Oil Ejection During an Accidental Cap-off Running Condition for Two Baffle Designs

2022-03-29
2022-01-0398
Three-dimensional transient numerical simulations are conducted to study the oil flow in a four-cylinder internal-combustion engine while it operates without its oil filler cap on. The emphasis of the study is on analyzing the consequential oil ejection through the oil-cap open boundary. Navier-Stokes equations are solved together with the multiphase Volume of Fluid (VOF) model and the k-ϵ turbulence model. The engine crank shaft is mechanically connected to two cam shafts through a chain, which operates below the oil-filler duct. A baffle is located between the chain and the duct, shielding the latter to minimize oil ejection and potential spills. The chain geometry and dynamics are captured accurately through volume remesh and conformal mapping techniques. The motion of the four pistons, crank shaft, and two cam shafts is also considered. Retaining all these mechanical and geometrical details in the simulations is essential to obtain accurate oil ejection results.
X