Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

Experimental Validation of Extended NO and Soot Model for Advanced HD Diesel Engine Combustion

2009-04-20
2009-01-0683
A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50 %), heavy-duty DI diesel combustion. Modeling activities have aimed at limiting the computational effort while maintaining a sound physical/chemical basis. The main inputs to the model are the fuel injection rate profile, in-cylinder pressure data and trapped in-cylinder conditions together with basic fuel spray information. Obtaining accurate values for these inputs is part of the model validation process which is thoroughly described. Modeling results are compared with single-cylinder as well as multi-cylinder heavy-duty diesel engine data. NO and soot level predictions show good agreement with measurement data for conventional and high-EGR combustion with conventional timing.
Journal Article

Experimental Analysis of Engine Exhaust Waste Energy Recovery Using Power Turbine Technology for Light Duty Application

2012-09-10
2012-01-1749
An experimental analysis was executed on a NA (Natural Aspirated) 4-stroke gasoline engine to investigate the potential of exhaust waste energy recovery using power turbine technology for light duty application. Restrictions with decreasing diameter were mounted in the exhaust to simulate different vane positions of a VGT (Variable Geometry Turbine) and in-cylinder pressure measurements were performed to evaluate the effect of increased exhaust back pressure on intake- and exhaust pumping losses and on engine performance. Test points in the engine map were chosen on the basis of high residence time for the vehicle during the NEDC (New European Driving Cycle). The theoretically retrievable power was calculated in case a turbine is mounted instead of a restriction and the net balance was obtained between pumping power losses and recovered energy.
Journal Article

Non-Linear Full-Car Modeling and Sky-Hook Control for a Direct-Drive Active Suspension System

2013-04-08
2013-01-0713
At Eindhoven University of Technology an active suspension system has been developed [1]. This system is superior to other active suspension in terms of bandwidth and power consumption. This active suspension system was tested on a quarter car setup and showed improvements of up to 48% in comfort [2]. In order to implement this suspension in a test vehicle with the same improvements, a non-linear full-car model is developed in this paper which is used to simulate and design various controllers. The non-linear model incorporates non-linear damping, bump stops, actuator saturation and actuator friction. To model the friction in the actuator a combination of Coulomb and viscous friction is used. To model the MacPherson suspension strut, two methods are described and compared. Also the implications of using acceleration sensors which are placed in line with the MacPherson strut are discussed.
Journal Article

Commercial Naphtha Blends for Partially Premixed Combustion

2013-04-08
2013-01-1681
Partially Premixed Combustion has shown the potential of low emissions of nitrogen oxides (NOx) and soot with a simultaneous improvement in fuel efficiency. Several research groups have shown that a load range from idle to full load is possible, when using low-octane-number refinery streams, in the gasoline boiling range. As such refinery streams are not expected to be commercially available on the short term, the use of naphtha blends that are commercially available could provide a practical solution. The three blends used in this investigation have been tested in a single-cylinder engine for their emission and efficiency performance. Besides a presentation of the sensitivity to injection strategies, dilution levels and fuel pressure, emission performance is compared to legislated emission levels. Conventional diesel combustion benchmarks are used for reference to show possible improvements in indicated efficiency.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Butanol-Diesel Blends for Partially Premixed Combustion

2013-04-08
2013-01-1683
Partially Premixed Combustion has shown the potential of high efficiency, emissions of nitrogen oxides (NOx) and soot below future emissions regulations, and acceptable acoustic noise. Low-octane-number gasoline fuels were shown to be most suitable for this concept, with the reactivity determining the possible load range. Other researchers have used several refinery streams, which might be produced by a refinery if they were required to do so without additional investment. Some of refinery streams are, however, not expected to be commercially available on the short term. For the present investigation, n-butanol (BuOH) has been selected as a blend component in diesel, and is used from 50 - 100%. The blends then have a reactivity range similar to the refinery streams, so single-cylinder engine tests for their emission and efficiency performance can also be used to determine their applicable load range.
Technical Paper

Oxygenated Fuel Composition Impact on Heavy-Duty Diesel Engine Emissions

2007-07-23
2007-01-2018
This paper reports on a study of a large number of blends of a low-sulfur EN-590 type diesel fuel respectively of a Swedish Class 1 fuel and of a synthetic diesel with different types of oxygenates. Oxygen mass fraction of the blends varied between 0 and 15 %. For comparison, the fuel matrix was extended with non-oxygenated blends including a diesel/water emulsion. Tests were performed on a modern multi-cylinder HD DAF engine equipped with cooled EGR for enabling NOx-levels between 2.0 and 3.5 g/kWh on EN-590 diesel fuel. Additional tests were done on a Volvo Euro-2 type HD engine with very low PM emission. Finally, for some blends, combustion progress and soot illumination was registered when tested on a single cylinder research engine with optical access. The results confirm the importance of oxygen mass fraction of the fuel blend, but at the same time illustrate the effect of chemical structure: some oxygenates are twice as effective in reducing PM as other well-known oxygenates.
Technical Paper

Design and Operation of a High Pressure, High Temperature Cell for HD Diesel Spray Diagnostics: Guidelines and Results

2009-04-20
2009-01-0649
This paper first compares strengths and weaknesses of different options for performing optical diagnostics on HD diesel sprays. Then, practical experiences are described with the design and operation of a constant volume test cell over a period of more than five years. In this test rig, pre-combustion of a lean gas mixture is used to generate realistic gas mixture conditions prior to fuel injection. Spray growth, vaporization are studied using Schlieren and Mie scattering experiments. The Schlieren set-up is also used for registration of light emitted by the combustion process; this can also provide information on ignition delay and on soot lift-off length. The paper further describes difficulties encountered with image processing and suggests methods on how to deal with them.
Technical Paper

Investigation on Differences in Engine Efficiency with Regard to Fuel Volatility and Engine Load

2008-10-06
2008-01-2385
An HSDI Diesel engine was fuelled with standard Swedish environmental class 1 Diesel fuel (MK1), Soy methyl ester (B100) and n-heptane (PRF0) to study the effects of both operating conditions and fuel properties on engine performance, resulting emissions and spray characteristics. All experiments were based on single injection diesel combustion. A load sweep was carried out between 2 and 10 bar IMEPg. For B100, a loss in combustion efficiency as well as ITE was observed at low load conditions. Observed differences in exhaust emissions were related to differences in mixing properties and spray characteristics. For B100, the emission results differed strongest at low load conditions but converged to MK1-like results with increasing load and increasing intake pressures. For these cases, spray geometry calculations indicated a longer spray tip penetration length. For low-density fuels (PRF0) the spray spreading angle was higher.
Technical Paper

Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime

2009-09-13
2009-24-0048
Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a conventional CI fuel faces a number of challenges. First, EDI has the intrinsic risk of wall-wetting, i.e. collision of fuel against the combustion chamber periphery. Second, engine operation in the EDI regime is difficult to control as auto-ignition timing is largely decoupled from fuel injection timing. In dual-mode PCCI engines (i.e. conventional Dl at high loads) wall-wetting should be prevented by selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than by redesign of the engine (combustion chamber shape, injector replacement etc.).
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
X