Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling and Analysis of the Hydrogen Production via Steam Reforming of Ethanol, Methanol, and Methane Fuels

2024-04-09
2024-01-2179
The global transition to alternative power sources, particularly fuel cells, hinges on the cost-effective production and distribution of hydrogen fuel. While green hydrogen produced through water electrolysis using renewable energy sources holds immense promise, it currently falls short of meeting the burgeoning demand for hydrogen. To address this challenge, alternative methods, such as steam reforming and partial oxidation of hydrocarbon fuels with integrated carbon capture, are poised to bridge the gap between supply and demand in the near to midterm. Steam reforming of methane is a well-established technology with a proven track record in the chemical industry, serving as a dependable source of hydrogen feedstock for decades. However, to meet the demand for efficient hydrogen storage, handling, and onboard reforming, researchers are increasingly exploring liquid hydrocarbon fuels at room temperature, such as methanol and ethanol.
Technical Paper

Modeling of Vent Gas Composition during Battery Thermal Runaway

2024-04-09
2024-01-2199
The growing global adoption of electric vehicles (EVs) emphasizes the pressing need for a comprehensive understanding of thermal runaway in lithium-ion batteries. Prevention of the onset of thermal runaway and its subsequent propagation throughout the entire battery pack is one of the pressing challenges of lithium-ion batteries. In addition to generating excess heat, thermal runaway of batteries also releases hazardous flammable gases, posing risks of external combustion and fires. Most existing thermal runaway models in literature primarily focus on predicting heat release or the total amount of vent gas. In this study, we present a model capable of predicting both heat release and the transient composition of emitted gases, including CO, H2, CO2, and hydrocarbons, during thermal runaway events. We calibrated the model using experimental data obtained from an 18650 cell from the literature, ensuring the accuracy of reaction parameters.
X