Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Video

The Utility and Fuel Consumption of Hybrid and Electric Vehicles

2012-03-27
There are now a wide variety of Hybrid and Electric Vehicles in or near production. They reduce or displace petroleum consumption with of various combinations of conventional IC engine, mechanical transmission, liquid fuel storage, electrical energy storage, electrical and electro-mechanical energy conversion, and vehicle-to-grid energy interface. These Electrified types of vehicles include Mild Hybrid, Full Hybrid, Plug-In Hybrid, Extended Range Electric, and Battery Electric. Some types differ in their actual usability for the real mixes of driving trips, and further that differ in their effectiveness to reduce or displace fuel in actual real world driving use. Vehicle size is also a factor in total vehicle utility in transporting people. If we may segment drivers by their driving needs, in each segment, we see a particular type of electrified vehicle that is better suited than others at minimizing fuel cost and petroleum consumption for the purposes of transporting people.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
Technical Paper

Cell Balancing Algorithm Verification through a Simulation Model for Lithium Ion Energy Storage Systems

2010-04-12
2010-01-1079
To support the market introduction of lithium ion energy storage systems for HEV and EREV applications, a process and tool was developed to expedite the verification of the lithium-ion cell balancing system across differing usage scenarios and cell imbalance rates. Presented is an overview of the cell imbalance analysis methodology and tool used in the development and verification of General Motors cell balancing systems. The use of this analysis methodology and tool has allowed for a cell balancing system optimization that would not have been possible with the use of actual energy storage systems because of the magnitude of lab or vehicle time required to execute the array of tests necessary to comprehend the large number of factors than can influence balancing.
Technical Paper

A Robust Procedure for Convergent Nonparametric Multivariate Metamodel Design

2004-03-08
2004-01-1127
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
Technical Paper

An Integrated Stochastic Design Framework Using Cross-Validated Multivariate Metamodeling Methods

2003-03-03
2003-01-0876
An integrated stochastic design framework that facilitates practical applications involving time-consuming CAE simulations is described. The probabilistic performance measure that addresses stochastic uncertainties in CAE modeling and simulations is used to support design decision-making. Two enabling metamodeling methods using cross-validated radial basis functions (CVRBF) and a corresponding uniform sampling method are introduced to approximate highly nonlinear CAE model input/output relationships. A vehicle restraint system example is used to demonstrate the effectiveness of the proposed framework and enabling techniques.
Technical Paper

Application of CAEBAT System Approach for a Liquid-Cooled Automotive Battery Pack

2016-04-05
2016-01-1205
As one of many pack-level battery simulation approaches developed within the General Motors-led Computer-Aided Engineering of Automotive Batteries (CAEBAT) Phase 1 project, the system approach treats the entire battery pack as a dynamic system which includes multiple engineering disciplines for simulation. It is the most efficient approach of all the CAEBAT battery pack-level approaches in terms of computational time and resources. This paper reports the application of the system approach for a 24-cell liquid-cooled prototype battery pack. It also summarizes the verification of the approach by comparing the simulation results with the measurement data. The results using the system approach are found to have a very good agreement with the measurements.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

Formulation of Robustness in a CAE Design Model

2005-04-11
2005-01-0813
As the computer efficiency and capability increase, so as the Computer Aided Engineering (CAE) technologies improve. Recently Robust Design or Reliability Based Design Optimization (RBDO) technologies have been utilized in all sorts of industries including automotive. The process generally involves identifying key input design variables and key performance output variables, determining a sampling plan for CAE simulations, building a response surface model (RSM), analyzing the results, and finding the optimized design that meets the reliability criteria. Yet little was addressed on the robustness of a CAE design model in the process. A systematic method of defining Robustness in a CAE design model was developed. How robust a CAE model is and how far away an optimized design is from the More Robust Region (MRR) are addressed in this paper.
Technical Paper

Analysis of Hollow Hyper-Elastic Gaskets Filled with Air Using Fluid Cavity Approach

2022-10-05
2022-28-0069
Hyper-elastic seals are extensively used in automotive applications for sealing various joints in assembly. They are also used in sealing battery packs. They are used in various sizes and shapes. Most of the gaskets used are solid gaskets. Hollow gaskets are also being used. Hollow gaskets typically have a fluid like air trapped inside. Analyzing these hollow gaskets also requires involving the physics of the fluid inside. The trapped fluid affects the performance of the gasket like contact pressure and width. Objective of this study is to analyze the hollow gasket performance including the effect of air trapped inside. The effect of air on performance of the hollow seal is also studied. Fluid Cavity capability in ABAQUS was selected after literature study to simulate the effect of trapped fluid (Air) on seal performance.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

1999-03-01
1999-01-1270
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Posture and Position Validation of the 3-D CAD Manikin RAMSIS for Use in Automotive Design at General Motors

1999-05-18
1999-01-1899
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation at General Motors (GM). The model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. We concluded that RAMSIS has good position and posture prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Harshness Improvement in Mid-Size Trucks

2024-01-08
2023-36-0082
Ride comfort is a critical factor to customer perception of vehicle quality as it is related to vehicle experience when driving. It adds value to the product and, consequently, to vehicle brand. It has become a demand not only for passenger unibody vehicles but also to larger segments including mid-size trucks. Ride quality is usually quantified as harshness which is a measure of how the vehicle transmits the road irregularities to the customer at the tactile points such as the steering wheel and seats. Improving harshness requires tuning of different parts including tires, chassis frame/subframe and suspension mounts and bushings. This paper describes the methodology to enhance the harshness performance for a mid-size truck using a full vehicle CAE model. The influence of stiffnesses of body mounts and control arms bushings to harshness response is investigated through sensitivity analysis and the optimal configuration is found.
X