Refine Your Search

Topic

Search Results

Journal Article

Calculation of Heating Value for Gasoline Containing Ethanol

2010-05-05
2010-01-1517
Ethanol for use in automotive fuels can be made from renewable feedstocks, which contributes to its increased use in recent years. There are many differences in physical and chemical properties between ethanol and petrochemicals refined from fossil oil. One of the differences is its energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb, the test is time-consuming and expensive. It is generally satisfactory and more convenient to estimate that property from other commonly-measured fuel properties. Several standardized empirical methods have been developed in the past for estimating the energy content of hydrocarbon fuels such as gasoline, diesel fuel, and jet fuel.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Magnesium Powertrain Mount Brackets: New Application of Material Being used in this Sub-System for Vehicle Mass Reduction

2007-04-16
2007-01-1031
The need for fuel economy gains is crucial in todays automotive market. There is also growing interest and knowledge of greenhouse gases and their effect on the environment. Paulstra's magnesium powertrain brackets were a solution that was presented not just to reduce the weight of the engine mounting system (which was already under its weight target before magnesium introduction), but in response of the OEM's desire to further reduce the weight of the vehicle for CAFE and weight class impact. This new engine mounting system has three powertrain mount brackets that are high-pressure die cast AZ91D magnesium alloy. This paper will show that these brackets to have a dramatic weight reduction compared to the standard aluminum die-cast material that they replaced. This paper describes the process of approval: concept and material sign-off by the OEM, FEA for strength and modal performance, corrosion, and the final product.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
Technical Paper

The Design Concept of the Duramax 6600 Diesel Engine

2001-11-12
2001-01-2703
A new Diesel engine, called the Duramax 6600 (Fig.1), has been designed by Isuzu Motors (Isuzu) for an upcoming full-size General Motors (GM) pickup truck. It incorporates the latest Diesel technology in order to improve on the inherent strengths of a Diesel engine, such as fuel economy, torque and reliability, while also producing higher output, smoother driveability, and lower noise. The Duramax 6600 is an entirely new 90° V8 direct injection (DI) intercooled engine with a water-cooled turbocharger. Its fuel injection system employs a fully electronically controlled common rail system that has high-pressure injection capabilities. Isuzu had the design responsibility of the base engine, while GM Truck Group was responsible for designing the installation and packaging within the vehicle. Engine validation relied on Isuzu's proven validation process, in addition to GM Powertrain's expertise in engine validation.
Technical Paper

High Fuel Economy CIDI Engine for GM PNGV Program

2002-03-04
2002-01-1084
A compact, lightweight compression-ignition engine designed for high fuel economy and low emissions was developed by ISUZU for the GM PNGV vehicle. This engine was the key component in the selected parallel hybrid vehicle powertrain for the 80 mpg fuel economy target. The base hardware was derived from a 1.7 Liter, 4-cylinder engine, and a three-cylinder version was created for the PNGV application. To achieve the required high efficiency, the engine used lightweight components thus minimizing weight and friction. To reduce exhaust emissions, electromechanical actuators were used for EGR, intake throttle, and turbocharger. Through careful application of these devices and combustion development, stringent engine out exhaust emission targets were also met.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Technical Paper

Comparative Analysis of Single and Combined Hybrid Electrically Variable Transmission Operating Modes

2005-04-11
2005-01-1162
Electrically variable transmissions divide power between the electrical and mechanical paths using input, output, or compound split schemes. When combined with an electrical energy storage element such as a battery, these systems allow numerous fuel saving and performance benefits. This paper examines the design tradeoffs in each of the three topologies in order to balance fuel economy, system performance against requirements, and electrical component size. A general EVT analysis method is presented and used to study the fuel economy and performance sensitivity of the three configurations to motor, inverter, and battery constraints, and planetary gear ratios. To evaluate fuel economy, the three systems are assessed for each of the primary fuel economy mechanisms enabled by hybridization. To evaluate performance tradeoffs, system performance against typical vehicle performance design points is compared.
Technical Paper

Overview - Painted Aluminum Wheels

1986-12-08
862022
This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

Life Cycle Assessment of Advanced Materials for Automotive Applications

2000-04-26
2000-01-1486
Substituting alternative materials for conventional materials in automotive applications is an important strategy for reducing environmental burdens over the entire life cycle through weight reduction. Strong, light carbon composites and lightweight metals can potentially be used for components such as body structure, chassis parts, brakes, tie rods, or instrument panel structural beams. There are also proposed uses in conventional and alternative powered vehicles for other advanced materials, including synthetic graphite, titanium, and metals coated with graphite composite, that have special strength, hardness, corrosion resistance, or conductivity properties. The approach used in this paper was to compare the environmental life cycle inventory of parts made from carbon fiber-thermoplastic composites, synthetic graphite, titanium, and graphite coated aluminum, with parts made from conventional steel or aluminum.
Technical Paper

Springback Prediction Using Combined Hardening Model

2000-10-03
2000-01-2659
The main objective of this paper is to simulate the springback using combined kinematic/isotropic hardening model. Material parameters in the hardening model are identified by an inverse method. Three-point bending test is conducted on 6022-T4 aluminum sheet. Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves is generated with the material parameters found in this way, which can be used with other plastic models. ABAQUS/Standard 5.8, which has the combined isotropic/kinematic hardening model, is used to simulate draw-bend of 6022-T4 series aluminum sheet. Absolute springback angles are predicted very accurately.
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Experimental Study of Acoustic and Thermal Performance of Sound Absorbers with Microperforated Aluminum Foil

2019-06-05
2019-01-1580
Aluminum foil applied to the surface of sound absorbing materials has broad application in the automotive industry. A foil layer offers thermal insulation for components close to exhaust pipes, turbo chargers, and other heat sources in the engine compartment and underbody. It can also add physical protection for acoustic parts in water-splash or stone-impingement areas of the vehicle exterior. It is known that adding impermeable plain foil will impact the sound absorption negatively, so Microperforated Aluminum Foil (MPAF) is widely used to counteract this effect. Acoustic characteristics of MPAF can be modeled analytically, but deviation of perforation size and shape, variation of hole density, material compression, and adhesive applied to the back of the foil for the molding process can impact the acoustic and thermal insulation performance.
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
X