Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Technical Paper

Internal Heat Exchanger Design Performance Criteria for R134a and HFO-1234yf

2010-04-12
2010-01-1210
This paper will examine the various design and performance criteria for optimized internal heat exchanger performance as applied to R134a and HFO-1234yf systems. Factors that will be considered include pressure drop, heat transfer, length, internal surface area, the effect of oil in circulation, and how these factors impact the effectiveness of the heat exchanger. The paper describes the test facility used and test procedures applied. Furthermore, some design parameters for the internal heat exchanger will be recommended for application to each refrigerant.
Technical Paper

B-Pillar Intrusion and Velocity Sensitivity Study for Side Impact Load Case

2011-10-06
2011-28-0109
In the early vehicle design stage math model, subsystems such as dummies, airbags and interior trims are generally not considered for structural evaluation. The objective of this study is to evaluate the B-pillar intrusion and velocity sensitivity in a side impact load case with respect to the dummies, airbags and interior trim. In this study four different vehicles were used to understand the B-pillar intrusion and velocity sensitivity trends. US NCAP lateral impact load case is used in this study. Five side impact load case analyses iterations, with different combinations of subsystems, were completed. Dummy inertia and interior trims play an important role for B-Pillar intrusion and velocity in side impact load case (USLINCAP). If the dummy and interior trim is not well defined in the CAE model, higher B-pillar intrusion and velocity will be predicted. This could vary from 10 to 25 %.
Technical Paper

Enhanced Acoustic Performance using Key Design Parameters of Headliners

2015-06-15
2015-01-2339
Sound absorption materials can be key elements for mass-efficient vehicle noise control. They are utilized at multiple locations in the interior and one of the most important areas is the roof. At this location, the acoustic treatment typically comprises a headliner and an air gap up to the body sheet metal. The acoustic performance requirement for such a vehicle subsystem is normally a sound absorption curve. Based on headliner geometry and construction, the sound absorption curve shape can be adjusted to increase absorption in certain frequency ranges. In this paper an overall acoustic metric is developed to relate design parameters to an absorption curve shape which results in improved in-vehicle performance. This metric is based on sound absorption coefficient and articulation index. Johnson-Champoux-Allard equivalent fluid model and diffuse field equations are used. The results are validated using impedance tube measurements.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

Energy Efficiency Impact of Localized Cooling

2014-04-01
2014-01-0695
Traditional vehicle air conditioning systems are designed to cool the entire cabin to provide passenger comfort. Localized cooling, on the other hand, focuses on keeping the passenger comfortable by creating a micro climate around the passenger. Such a system also easily adapts to the number of passengers in the car and enables zonal control. The net impact of the localized cooling is that equivalent comfort can be achieved at reduced HVAC energy consumption rate. The present paper reports on a vehicle implementation of localized cooling using Thermoelectric Devices and the resulting energy saving.
Technical Paper

Temperature Control of Water with Heating, Cooling and Mixing in a Process with Recycle Loop

2014-04-01
2014-01-0652
A hot and cold water mixing process with a steam condenser and a chilled water heat exchanger is set up for an engine EGR fouling test. The test rig has water recycled in the loop of a pump, heat exchangers, a three-way mixing valve, and a test EGR unit. The target unit temperature is controlled by a heating, cooling and mixing process with individual valves regulating the flow-rate of saturated steam, chilled water and mixing ratio. The challenges in control design are the dead-time, interaction, nonlinearity and multivariable characteristics of heat exchangers, plus the flow recycle in the system. A systems method is applied to extract a simple linear model for control design. The method avoids the nonlinearity and interaction among different temperatures at inlet, outlet and flow-rate. The test data proves the effectiveness of systems analysis and modeling methodology. As a result, the first-order linear model facilitates the controller design.
Journal Article

A Critical Assessment of Factors Affecting the Flammability of R-1234yf in a Frontal Collision

2014-04-01
2014-01-0419
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered.
Technical Paper

Solar Heat Load on the Vehicle Occupants

2016-04-05
2016-01-0246
Vehicle occupants, unlike building occupants, are exposed to continuously varying, non-uniform solar heat load. Automotive manufacturers use photovoltaic cells based solar sensor to measure intensity and direction of the direct-beam solar radiation. Use of the time of the day and the position - latitude and longitude - of a vehicle is also common to calculate direction of the direct-beam solar radiation. Two angles - azimuth and elevation - are used to completely define the direction of solar radiation with respect to the vehicle coordinate system. Although the use of solar sensor is common in today’s vehicles, the solar heat load on the occupants, because of their exposure to the direct-beam solar radiation remains the area of in-car subjective evaluation and tuning. Since the solar rays travel in parallel paths, application of the ray tracing method to determine solar insolation of the vehicle occupants is possible.
X