Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Technical Paper

Performance Evaluation of Door & Seat Side-Impact Airbags for Passenger Van and Sport-Utility Vehicles

1998-02-23
980912
Side impact accounts for a significant source of societal harm, injury and death. To address this issue, Europe and US have introduced legislation to be met for the new vehicle certification. In an effort to meet these regulations and the market demand for safety, Automotive manufacturers have significantly improved vehicle side structure integrity and introduced side impact airbags are for added protection. Today, passenger vans, light truck and sport-utility type vehicles are all popular consumer choices in the US. These vehicles differ significantly from passenger cars in many respects and as such need special design considerations for side airbags. Here, MADYMO-3D model of a generic passenger van / Sport-Utility type vehicle is created and correlated to FMVSS-214 side impact crash test. This model is used to evaluate both door and seat mounted side airbag designs in different orientations at standard test impact condition and at a higher speed.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

B-Pillar Intrusion and Velocity Sensitivity Study for Side Impact Load Case

2011-10-06
2011-28-0109
In the early vehicle design stage math model, subsystems such as dummies, airbags and interior trims are generally not considered for structural evaluation. The objective of this study is to evaluate the B-pillar intrusion and velocity sensitivity in a side impact load case with respect to the dummies, airbags and interior trim. In this study four different vehicles were used to understand the B-pillar intrusion and velocity sensitivity trends. US NCAP lateral impact load case is used in this study. Five side impact load case analyses iterations, with different combinations of subsystems, were completed. Dummy inertia and interior trims play an important role for B-Pillar intrusion and velocity in side impact load case (USLINCAP). If the dummy and interior trim is not well defined in the CAE model, higher B-pillar intrusion and velocity will be predicted. This could vary from 10 to 25 %.
Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Suppression Technologies for Advanced Air Bags

2000-11-01
2000-01-C037
In May 2000 the National Highway Traffic Safety Administration (NHTSA) issued the final rule for the Advanced Air Bag regulations effective MY 2004 for vehicles to be sold in the United States. These regulations are in response to the air bag-induced injuries seen in the field, especially to children and short women. Advanced air bags require a vehicle manufacturer to design air bags for a broad array of occupants: 12-month-old, 3-year-old and 6-year-old children, and 5th percentile adult females, as well as 50th percentile adult males with new and more stringent injury criteria. Requirements for minimizing air bag risks include automatically turning off the air bag in the presence of young children or deploying the air bag in a manner much less likely to cause serious or fatal injury to out-of-position occupants. Technologies that disable the air bag in the presence of young children or adults in out-of-position are termed as "suppression technologies.'
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Environmentally Conscious Manufacturing of TPO Instrument Panel Skins

2000-03-06
2000-01-0023
Thermoplastic polyolefin (TPO) instrument panel skins are in demand in Europe and Asia as a solution to final product disposition environmental concerns. In North America TPO is valued for its durability characteristics (particularly heat and UV aging) and capability for deployment of seamless airbags at cold temperatures. Desiring to have an environmentally “green” system to create the “green” product, Delphi designed a manufacturing process with in-plant closed loop recycling of 100% offal directly back into the skin and the use of waterbased coating system for combating concerns with solvents. Delphi's development of recyclable TPO skin for instrument panels was introduced on 1997 production of Mercedes-Benz M-class. The paper will describe how the systems approach was used in overcoming the challenges involved in closed loop recycling of engineered offal during sheet manufacturing and thermoforming processes and the implementation of waterbased primer and topcoat systems.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

Safety Belt Testing Apparatus

2015-04-14
2015-01-1485
A new apparatus for testing modern safety belt systems was developed. The apparatus design, dynamic behavior and test procedure are described. A number of tests have been conducted using this apparatus. These tests allowed identification of key performance parameters of pretensioners and load limiting retractors which are relevant to occupant protection in a crash environment. Good test repeatability was observed, which allowed comparison of different safety belt designs. The apparatus may be used for better specification and verification of safety belt properties on a subsystem level as well as for the validation of CAE models of safety belts used in simulations of occupant response to crash events.
Technical Paper

Development of a Small Rear Facing Child Restraint System Virtual Surrogate to Evaluate CRS-to-Vehicle Interaction and Fitment

2015-04-14
2015-01-1457
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
This study compares the effect of US and European airbag deployments on injury outcomes for belted drivers in frontal crashes. Driver weight, height and seat track position was also examined in relation to those outcomes. This information may help to prioritize and guide the logic for “Smart” airbags. For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. The parameters investigated were Injury Severity Score (ISS), Equivalent Test Speed (ETS), occupant weight, occupant height and seat location. For US drivers, the injury rate and occurrence were calculated using weighted data, while for UK drivers, the rate and occurrence were obtained using unweighted data.
X