Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Passive Pedestrian Protection Approach for Vehicle Hoods

Global regulations intended to enhance pedestrian protection in a vehicle collision, thereby reducing the severity of pedestrian injuries, are presenting significant challenges to vehicle designers. Vehicle hoods, for example, must absorb a significant amount of energy over a small area while precluding impact with a hard engine compartment component. In this paper, a simple passive approach for pedestrian protection is introduced in which thin metal alloy sheets are bent to follow a C-shaped cross-sectional profile thereby giving them energy absorbing capacity during impact when affixed to the underside of a hood. Materials considered were aluminum (6111-T4, 5182-O) and magnesium (AZ31-O, AZ61-O, ZEK100) alloys. To evaluate the material effect on the head injury criterion (HIC) score without a hood, each C-channel absorber was crushed in a drop tower test using a small dart.
Technical Paper

Fixed Weld Reduction Method for Optimal Spot Weld Pattern Design

A new solution methodology for optimal spot-weld pattern design is presented. The objective of the optimization is to minimize the total number of welds in a structure while maintaining structural properties above a required level. Two approaches were developed, based on the representation of welds in a finite element model. In the approach ‘without ranking’ welds are represented in a traditional way, as rigid connections. In ‘with ranking’ approach welds are treated as elastic elements subjected to stresses and deformations under given loading conditions. The information on weld stress is utilized in the solution process to reduce the number of design variables and improve the quality of the solution. The applicability of the method to large automotive structures was demonstrated, as well as the capacity for optimization with respect to multiple load sets.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Journal Article

Strain Field Measurement in the Vicinity of Ductile Rupture from Digital Image Correlation

A methodology that enables two-dimensional strain field measurement in the vicinity of ductile rupture is described. Fully martensitic steel coupons were strained to fracture using a miniature tensile stage with custom data and image acquisition systems. Rupture initiated near the center of each coupon and progressed slowly toward the gage section edges. A state-of-the-art digital image correlation technique was used to compute the true strain field before rupture initiation and ahead of the resulting propagating macroscopic crack before final fracture occurred. True strains of the order of 95% were measured ahead of the crack at later stages of deformation.
Technical Paper

Fast and Stable Quasi-Static Bending Simulations in LS-DYNA: Identification of Optimal Finite Element Model Parameters

The quality of material model input files for finite element analysis (FEA) is a fundamental factor governing the fidelity and accuracy of simulations at a sub-system or a vehicle level, dictating an investment of due diligence in developing and validating the material models. Several material models conventionally employed for FEA typically allow accounting for only uniaxial tensile behavior of the material; however, the models may be required to predict component-level response in a complex loading scenario. Therefore in developing LSDYNA material input files for such models, it becomes critical to validate their performance in alternative loading scenarios. For out-ofplane loading, typically a three or four-point bending load-case is used for validation. Simulating three point bending (TPB), particularly in the quasi-static regime, requires detailed representation of the moving pin impacting the specimen, and sliding of the specimen on the stationary pins.