Refine Your Search

Topic

Author

Affiliation

Search Results

Video

OBD Challenges for Plug In Hybrid Electric Vehicles

2012-01-30
Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Dynamic Torque Characteristics of the Hydrodynamic Torque Converter

2011-05-17
2011-01-1540
The objective of this investigation is to characterize the torsional characteristics of the hydrodynamic torque converter. Analytical and experimental techniques are used to quantify the relationship between torsional oscillations imposed on the pump to those at the turbine as a function of frequency, operating point and design. A detailed model of the hydrodynamic torque converter based upon one-dimensional flow theory is used to establish fundamental torsional behavior independent of the downstream mechanical system. A simplified linear spring-mass-damper representation of the hydrodynamic torque converter is derived whose coefficients are proportional to pump speed for a particular design. A transmission dynamometer test cell with the capability to produce torsional oscillations was used to develop frequency response functions for various torque converters in a transmission, operating at steady state conditions.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Development of a Camera-Based Forward Collision Alert System

2011-04-12
2011-01-0579
Forward Collision Alert (or Forward Collision Warning) systems provide alerts intended to assist drivers in avoiding or mitigating the harm caused by rear-end crashes. These systems currently use front-grille mounted, forward-looking radar devices as the primary sensor. In contrast, Lane Departure Warning (LDW) systems employ forward-looking cameras mounted behind the windshield to monitor lane markings ahead and warn drivers of unintended lane violations. The increasing imaging sensor resolution and processing capability of forward-looking cameras, as well recent important advances in machine vision algorithms, have pushed the state-of-the-art for camera-based features. Consequently, camera-based systems are emerging as a key crash avoidance system component in both a primary and supporting sensing role. There are currently no production vehicles with cameras used as the sole FCA sensing device.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

Aerodynamic Development of the 2011 Chevrolet Volt

2011-04-12
2011-01-0168
This paper presents some of the challenges and successful outcomes in developing the aerodynamic characteristics of the Chevrolet Volt, an electric vehicle with an extended-range capability. While the Volt's propulsion system doesn't directly affect its shape efficiency, it does make aerodynamics much more important than in traditional vehicles. Aerodynamic performance is the second largest contributor to electric range, behind vehicle mass. Therefore, it was critical to reduce aerodynamic drag as much as possible while maintaining the key styling cues from the original concept car. This presented a number of challenges during the development, such as evaluating drag due to underbody features, balancing aerodynamics with wind noise and cooling flow, and interfacing with other engineering requirements. These issues were resolved by spending hundreds of hours in the wind tunnel and running numerous Computational Fluid Dynamics (CFD) analyses.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Journal Article

Challenges for Tire Noise Evaluation on Common Pavements

2011-05-17
2011-01-1582
Developing common methods of noise evaluation and facilities can present a number of challenges in the area of tire/pavement noise. Some of the issues involved include the design and construction of pavements globally, the change in pavement over time, and variation in the noise produced with standard test tires used as references. To help understand and address these issues for airborne tire/pavement noise, acoustic intensity measurement methods based on the On-board Sound Intensity (OBSI) technique have been used. Initial evaluations have included measurements conducted at several different proving grounds. Also included were measurements taken on a 3m diameter tire noise dynamometer with surfaces replicating test track pavements. Variation between facilities appears to be a function of both design/construction and pavement age. Consistent with trends in the literature, for smooth asphalt surfaces, the newest surface produced levels lower than older surfaces.
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Journal Article

Light Vehicle Dry Stopping Distance - Vehicle Speed Correction, Tire Burnish, and Surface Friction Correction

2011-04-12
2011-01-0966
Consistent and accurate vehicle stopping distance measurements have been difficult to achieve across the industry including media vehicle evaluations. Initial test speed, brake pedal force application, tire burnish, road surface friction, and Anti-lock Brake System (ABS) efficiency are five test variables influencing variation in stopping distance measurements. This paper will discuss these five test variables and how to apply consistent test methods to reduce test variation.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
X