Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Journal Article

Variable and Fixed Airflow for Vehicle Cooling

2011-04-12
2011-01-1340
This paper describes rationale for determining the apportionment of variable or ‘shuttered’ airflow and non-variable or static airflow through openings in the front of a vehicle as needed for vehicle cooling. Variable airflow can be achieved by means of a shutter system, which throttles airflow through the front end and into the Condenser, Radiator, and Fan Module, (CRFM). Shutters originated early in the history of the auto industry and acted as a thermostat [1]. They controlled airflow as opposed to coolant flow through the radiator. Two benefits that are realized today are aerodynamic and thermal gains, achieved by restricting unneeded cooling airflow. Other benefits exist and justify the use of shutters; however, there are also difficulties in both execution and practical use. This paper will focus on optimizing system performance and execution in terms of the two benefits of reduced aerodynamic drag and reduced mechanical drag through thermal control.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Journal Article

Micro-Cooling/Heating Strategy for Energy Efficient HVAC System

2011-04-12
2011-01-0644
Energy efficient HVAC system is becoming increasingly important as higher Corporate Average Fuel Economy (CAFE) standards are required for future vehicle products. The present study is a preliminary attempt at designing energy efficient HVAC system by introducing localized heating/cooling concepts without compromising occupant thermal comfort. In order to achieve this goal of reduced energy consumption while maintaining thermal comfort it is imperative that we use an analytical model capable of predicting thermal comfort with reasonable accuracy in a non-homogenous enclosed thermal environment such as a vehicle's passenger cabin. This study will primarily focus on two aspects: (a) energy efficiency improvements in an HVAC system through micro-cooling/heating strategies and (b) validation of an analytical approach developed in GM that would support the above effort.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Optimizing 12 Volt Start - Stop for Conventional Powertrains

2011-04-12
2011-01-0699
A cost effective means of achieving fuel economy gains in conventional powertrain is to utilize a 12 volt start/stop (S/S) system to turn the engine off and on during periods of vehicle idle. This paper presents powertrain integration issues specific to a 12 volt S/S system and the powertrain hardware content and calibration strategies required to execute a 12 volt S/S system for start ability, reduced noise and vibration (N&V) and vehicle launch. A correlated lumped parameter modeling methodology is used to determine engine startup profiles, starter hardware and intake cam park position requirements based upon vehicle level response to the startup event. Optimization of the engine startup is reported for a multitude of powertrain configurations, including transverse and longitudinal arrangements with manual, automatic and dual clutch transmissions.
Journal Article

Torque Converter Clutch Optimization: Improving Fuel Economy and Reducing Noise and Vibration

2011-04-12
2011-01-0146
The torque converter and torque converter clutch are critical devices governing overall power transfer efficiency in automatic transmission powertrains. With calibrations becoming more aggressive to meet increasing fuel economy standards, the torque converter clutch is being applied over a wider range of driving conditions. At low engine speed and high engine torque, noise and vibration concerns originating from the driveline, powertrain or vehicle structure can supersede aggressive torque converter clutch scheduling. Understanding the torsional characteristics of the torque converter clutch and its interaction with the drivetrain can lead to a more robust design, operation in regions otherwise restricted by noise and vibration, and potential fuel economy improvement.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

Co-Simulation Analysis of Transient Response and Control for Engines with Variable Valvetrains

2007-04-16
2007-01-1283
Modern engines are becoming highly complex, with several strongly interactive subsystems - - variable cam phasers on both intake and exhaust, along with various kinds of variable valve lift mechanisms. Isolated component models may not yield adequate information to deal with system-level interactive issues, especially when it comes to transient behavior. In addition, massive amounts of expensive experimental work will be required for optimization. Recent computing speed improvements are beginning to permit the use of co-simulation to couple highly detailed and accurate submodels of the various engine components, each created using the most appropriate available simulation package. This paper describes such a system model using GT-Power to model the engine, AMESim to model cam phasers and the engine lubrication system, and Matlab/Simulink to model the engine controllers and the vehicle.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

New On-Board Power Generation Technologies for Automotive Auxiliary Power Units

2003-06-23
2003-01-2256
Improving fuel economy, emissions, passenger comfort and convenience, safety, and vehicle performance in the automobile is resulting in the growth of electrical loads. In order to meet these electrical load demands and to meet the requirement of power generation when the engine is off, several technologies are on the horizon for on-board power generation in the vehicles. In this paper, new on-board power generation technologies based on the solid oxide fuel cell (SOFC), proton exchange membrane (PEM) fuel cell, thermo-photovoltaic (TPV) system, and diamond or carbon nanostructures are compared in terms power density, cost, and long term feasibility for automotive applications.
Technical Paper

Combustion Assisted Belt-Cranking of a V-8 Engine at 12-Volts

2004-03-08
2004-01-0569
Implementation of engine turnoff at idle is desirable to gain improvements in vehicle fuel economy. There are a number of alternatives for implementation of the restarting function, including the existing cranking motor, a 12V or 36V belt-starter, a crankshaft integrated-starter-generator (ISG), and other, more complex hybrid powertrain architectures. Of these options, the 12V belt-alternator-starter (BAS) offers strong potential for fast, quiet starting at a lower system cost and complexity than higher-power 36V alternatives. Two challenges are 1) the need to accelerate a large engine to idle speed quickly, and 2) dynamic torque control during the start for smoothness. In the absence of a higher power electrical machine to accomplish these tasks, combustion-assisted starting has been studied as a potential method of aiding a 12V accessory drive belt-alternator-starter in the starting process on larger engines.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
X