Refine Your Search

Topic

Search Results

Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Determination of Used Crankcase Oil Condition by Capillary Electrophoresis Analysis of Extracted Organic Acids

2009-11-02
2009-01-2689
Organic acid degradation products and other anions in engine oil were speciated by capillary electrophoresis (CE) and liquid chromatography-mass spectrometry (LCMS) with electrospray ionization. The sample preparation procedure involved selectively extracting the acids and other water soluble salts into 0.05M aqueous potassium hydroxide. Samples of engine-aged mineral oil and synthetic engine oil contained formic acid, acetic acid, and complex mixtures of fatty acid degradation products. CE analysis of formic acid, acetic acid and selected fatty acids is proposed as a new chemical analysis method for evaluating the condition of engine oil and for studying the effects of high temperature-high load (HTHL) oxidation. Because the overall pattern of CE peaks in the electropherogram changes with oil age or condition, CE-fingerprint (i.e., pattern recognition) techniques may also be useful for evaluating an aged oil's condition or remaining service life.
Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015-09-06
2015-24-2451
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Journal Article

Mechanisms of Enhanced Reactivity with Ozone Addition for Advanced Compression Ignition

2018-04-03
2018-01-1249
Mechanisms responsible for enhanced charge reactivity with intake added ozone (O3) were explored in a single-cylinder, optically accessible, research engine configured for low-load advanced compression ignition (ACI) experiments. The influence of O3 concentration (0-40 ppm) on engine performance metrics was evaluated as a function of intake temperature and start of injection for the engine fueled by iso-octane, 1-hexene, or a 5-component gasoline surrogate. For the engine fueled by either the gasoline surrogate or 1-hexene, 25 ppm of added O3 reduced the intake temperature required for stable combustion by 65 and 80°C, respectively. An ultraviolet (UV) light absorption diagnostic was also used to measure crank angle (CA) resolved in-cylinder O3 concentrations for select motored and fired operating conditions. The O3 measurements were compared to results from complementary 0D chemical kinetic simulations that utilized detailed chemistry mechanisms augmented with O3 oxidation chemistry.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

External Corrosion Resistance of CuproBraze® Radiators

2001-05-14
2001-01-1718
New technology for the manufacturing of copper/brass heat exchangers has been developed and the first automotive radiators are already in operation in vehicles. This new technology is called CuproBraze®. One of the essential questions raised is the external corrosion resistance with reference to the present soldered copper/brass radiators and to the brazed aluminium radiators. Based on the results from electrochemical measurements and from four different types of accelerated corrosion tests, the external corrosion resistance of the CuproBraze® radiators is clearly better than that of the soldered copper/brass radiators and competitive with the brazed aluminum radiators, especially as regards marine atmosphere. Due to the relatively high strength of the CuproBraze® heat exchangers, down gauging of fins and tubes in some applications is attractive. High performance coatings can ensure long lifetime from corrosion point of view, even for thin gauge heat exchangers.
Technical Paper

Selective Galvanizing Using Kinetic Spraying

2003-03-03
2003-01-1237
General corrosion protection of sheet materials such as steel used in automobile construction has reached a high level of performance, due primarily to the incorporation of mill-applied treatments such as electrogalvanizing, galvannealing and other coil-coating processes developed over the last half century. While such treatments have greatly extended the corrosion resistance of steel and its various body constructs, attention is now focused on aspects of the manufacturing process wherein these intended protections are compromised by such features as weldments, joins, cut edges and extreme metal deformations such as hems. A novel metal deposition process, based on high-velocity impact fusion of solid metal particles, has been used to extend the corrosion resistance of base steel and pre-galvanized sheet, by selectively placing highly controlled depositions of zinc and other sacrificial materials in close proximity to critical manufacturing details.
Technical Paper

Wrought Magnesium Components for Automotive Chassis Applications

2011-04-12
2011-01-0077
Automotive structural components are exposed to high loads, impact situations and corrosion. In addition, there may be temperature excursions that introduce creep as well as reduced modulus (stiffness). These issues have limited the use of light metals in automotive structural applications primarily to aluminum alloys, and primarily to cast wheels and knuckles (only a few of which are forged), cast brake calipers, and cast control arms. This paper reports on research performed at Chongqing University, Chongqing China, under the auspices of General Motors engineering and directed by the first author, to develop a protocol that uses wrought magnesium in control arms. The goal was to produce a chassis part that could provide the same engineering function as current cast aluminum applications; and since magnesium is 33% less dense than aluminum, would be lighter.
Technical Paper

Effects of Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2011-04-12
2011-01-0908
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries. The impact of these inhibitors on spark ignited fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the additive concentrations to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel; and, to show how the variation in the concentrations of the CIs impact the operation and performance of vehicles, specifically, the effects on intake valve deposit formation. Commercially available corrosion inhibitor packages for both gasoline and ethanol blended fuels, specifically E85 fuels, were studied for their chemical compositions, and their impact on valves for a port fuel injection (PFI) engine.
Technical Paper

Effects of Fretting Corrosion on Lift Glass

2011-04-12
2011-01-1434
The electrical architecture design of a rear back glass defrost grid system encompasses many critical criteria that must be integrated into the design. For example, the defrost clip location and interface to the glass must meet all vehicle performance requirements. If the defrost clip to the glass interface is not resistant to vibration and relative movement, detachment and loss of function can occur. This paper describes a back glass defrost clip with a solder joint that is robust to manufacturing variations and customer usage conditions. A designed experiment using Design for Six Sigma methodologies was performed to understand the effects of the attachment interface to the electrical wiring pigtail, and parameters that affect performance. The working constraints, testing set up, validation, and root cause investigation of the clip detachment phenomenon is covered in this paper.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
X