Refine Your Search

Topic

Author

Affiliation

Search Results

Video

OBD Challenges for Plug In Hybrid Electric Vehicles

2012-01-30
Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company
Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Real Fuel Modeling for Gasoline Compression Ignition Engine

2020-04-14
2020-01-0784
Increasing regulatory demand for efficiency has led to development of novel combustion modes such as HCCI, GCI and RCCI for gasoline light duty engines. In order to realize HCCI as a compression ignition combustion mode system, in-cylinder compression temperatures must be elevated to reach the autoignition point of the premixed fuel/air mixture. This should be co-optimized with appropriate fuel formulations that can autoignite at such temperatures. CFD combustion modeling is used to model the auto ignition of gasoline fuel under compression ignition conditions. Using the fully detailed fuel mechanism consisting of thousands of components in the CFD simulations is computationally expensive. To overcome this challenge, the real fuel is represented by few major components of create a surrogate fuel mechanism. In this study, 9 variations of gasoline fuel sets were chosen as candidates to run in HCCI combustion mode.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Journal Article

Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0340
A comprehensive experimental and theoretical approach was undertaken to understand the phenomenon of pre-ignition and to assess parameters to improve or even eliminate it completely. Oil mixing with fuel was identified as the leading theory of self ignition of the fuel. End of compression temperature has to meet a minimum level for pre-ignition to take place. In this work a comprehensive list of parameters were identified that have a direct and crucial role in the onset of pre-ignition including liner wetting, injection targeting, stratification, mixture motion and oil formulation. Many secondary effects were identified including ring dynamics, ring tension, spark plug electrode temperature and coolant temperature. CFD has been extensively used to understand test results including wall film, A/F ratio distribution and temperature at the end of compression when looked at in the context of fuel evaporation and mixing.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Handling Parameter Trends: 1980 - 2010

2011-04-12
2011-01-0969
Handling and tire performance continue to evolve due to significant improvements in vehicle, electronics, and tire technology over the years. This paper examines the trends in handling and tire performance metrics for production cars and trucks since the 1980's. This paper is based on a significant number of directional response and tire tests conducted during that period. It describes ranges of these parameters and shows how they have changed over the past thirty years.
Journal Article

Light Vehicle Dry Stopping Distance - Vehicle Speed Correction, Tire Burnish, and Surface Friction Correction

2011-04-12
2011-01-0966
Consistent and accurate vehicle stopping distance measurements have been difficult to achieve across the industry including media vehicle evaluations. Initial test speed, brake pedal force application, tire burnish, road surface friction, and Anti-lock Brake System (ABS) efficiency are five test variables influencing variation in stopping distance measurements. This paper will discuss these five test variables and how to apply consistent test methods to reduce test variation.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
X