Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

2013-09-17
2013-01-2158
The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Journal Article

Aerodynamic Development of the 2011 Chevrolet Volt

2011-04-12
2011-01-0168
This paper presents some of the challenges and successful outcomes in developing the aerodynamic characteristics of the Chevrolet Volt, an electric vehicle with an extended-range capability. While the Volt's propulsion system doesn't directly affect its shape efficiency, it does make aerodynamics much more important than in traditional vehicles. Aerodynamic performance is the second largest contributor to electric range, behind vehicle mass. Therefore, it was critical to reduce aerodynamic drag as much as possible while maintaining the key styling cues from the original concept car. This presented a number of challenges during the development, such as evaluating drag due to underbody features, balancing aerodynamics with wind noise and cooling flow, and interfacing with other engineering requirements. These issues were resolved by spending hundreds of hours in the wind tunnel and running numerous Computational Fluid Dynamics (CFD) analyses.
Journal Article

Theoretical and Experimental Flutter Predictions in High Aspect Ratio Composite Wings

2011-10-18
2011-01-2722
Next generation of composite civil aircrafts and unconventional configurations, such as High Altitude Long Endurance HALE-UAV, exhibit aeroelastic instabilities quite different from their rigid counterparts. Consequently, one has to deal with phenomena not usually considered in classical aircraft design. Alternative design criteria are needed in order to maintain the safety levels imposed by the regulations and required for certification. The A2-Net-Team project aims to build a multi-disciplinary network of researchers with complementary expertise to develop analytical methods used for a better understanding and assessment of the factors contributing to the occurrence of critical aeroservoelastic instabilities. Along with modeling and numerical investigations a test article will also provide the opportunity to modify and calibrate theoretical models, to highlight and explore their limits, to recommend the necessary modifications and future pertinent investigations.
Technical Paper

Development of Robust CAE Modeling Technique for Decklid Slam Analysis

2011-04-12
2011-01-0242
Engineering has continuously strived to improve the vehicle development process to achieve high quality designs and quick to launch products. The design process has to have the tools and capabilities to help ensure both quick to the market product and a flawless launch. To achieve high fidelity and robust design, mistakes and other quality issues must be addressed early in the engineering process. One way to detect problems early is to use the math based modeling and simulation techniques of the analysis group. The correlation of the actual vehicle performance to the predictive model is crucial to obtain. Without high correlation, the change management process begins to get complicated and costs start to increase exponentially. It is critical to reduce and eliminate the risk in a design up front before tooling begins to kick off. The push to help achieve a high rate of correlation has been initiated by engineering management, seeing this as an asset to the business.
Technical Paper

Efficient Procedure for Robust Optimal Design of Aerospace Laminated Structures

2017-09-19
2017-01-2058
Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

2017-09-19
2017-01-2061
An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Robust Design of a Light Weight Flush Mount Roof Rack

2011-04-12
2011-01-1274
Roof racks are designed for carrying luggage during customers' travels. These rails need to be strong enough to be able to carry the luggage weight as well as be able to withstand aerodynamic loads that are generated when the vehicle is travelling at high speeds on highways. Traditionally, roof rail gage thickness is increased to account for these load cases (since these are manufactured by extrusion), but doing so leads to increased mass which adversely affects fuel efficiency. The current study focuses on providing the guidelines for strategically placing lightening holes and optimizing gage thickness so that the final design is robust to noise parameters and saves the most mass without adversely impacting wind noise performance while minimizing stress. The project applied Design for Six Sigma (DFSS) techniques to optimize roof rail parameters in order to improve the load carrying capacity while minimizing mass.
Technical Paper

Energy Storage: Regenerative Fuel Cell Systems for Space Exploration

2011-10-18
2011-01-2624
Future exploration missions, including human missions to the Moon and Mars, are expected to have increasingly demanding operational requirements. Generating electrical power, and also maintaining a specific thermal environment, are both critical capabilities for any mission. In the case of exploration, both a wide range of mission types (robotic, human, ISRU etc.) and a variety of environments exist: from interplanetary space, to the shadow of a lunar crater, to the attenuated and red-shifted lighting on the Martian surface, power requirements must be met. This objective could be met with different technologies. The choice is dictated by the operating conditions and the different types of mission. TAS-I is historically mainly involved in missions related to the space exploration with the presence of astronauts. A typical example is the exploration of the Moon with the installation on the Moon surface of a base inclusive of pressurized habitats and rovers.
Technical Paper

Multi-objective Optimization of a Multifunctional Structure through a MOGA and SOM based Methodology

2013-09-17
2013-01-2207
A Multi-Objective Optimization (MOO) problem concerning the thermal control problem of Multifunctional Structures (MFSs) is here addressed. In particular the use of Multi-Objective algorithms from an optimization tool and Self-Organizing Maps (SOM) is proposed for the identification of the optimal topological distribution of the heating components for a multifunctional test panel, the Advanced Bread Board (ABB). MFSs are components that conduct many functions within a single piece of hardware, shading the clearly defined boundaries that identify traditional subsystems. Generally speaking, MFSs have already proved to be a disrupting technology, especially in aeronautics and space application fields. The case study exploited in this paper refers to a demonstrator breadboard called ABB. ABB belongs to a particular subset of an extensive family of MFS, that is, of thermo-structural panels with distributed electronics and a health monitoring network.
Technical Paper

Optimization of a Light Aircraft Spark-Ignition Engine

2006-08-30
2006-01-2420
The aim of this study was to find a convenient set-up for an innovative engine dedicated to light aircraft through a numerical one-dimensional simulation. Six different engine layouts were analyzed in order to find the highest power/weight ratio and the least voluminous configuration. The first was a four cylinder, four stroke, horizontally opposed, naturally aspirated, water cooled engine with 16 valves that delivered 75 kW (∼100 bhp) at 2400 rpm for an estimated weight of 65 kg. A gearbox was also used in the naturally aspirated model to decrease the displacement, the weight and the overall dimensions. The other solutions involved these two engines in a turbocharged layout in order to gain a further downsizing. The supercharging was obtained through a centrifugal compressor driven by an exhaust-gas driven turbine, which also allows the power to be restored at cruising altitude.
Technical Paper

Aerodynamic Optimization Using Add-On Devices: Comparison Between CFD and Wind Tunnel Experimental Test

2022-03-29
2022-01-0885
JUNO is an urban concept vehicle (developed at the Politecnico of Torino), equipped by an ethanol combustion engine, designed to obtain low consumptions and reduced environmental impact. For these goals the main requirements that were considered during the designing process were mass reduction and aerodynamic optimization, at first on the shape of the car body and then, thanks to add-on devices. JUNO’s aerodynamic development follows a defined workflow: geometry definition and modelling, CFD simulations and analysis, and finally geometry changes and CFD new verification. In this paper the results of the CFD simulations (using STARCCM+ and RANS k-ε) with a corresponding 1/1 scale wind tunnel tests made using the real vehicle. Particularly, the results in term of: total drag coefficient (Cx), total lift coefficient (Cz), the total pressure in the side and rear analyzing twenty different aerodynamics configurations made up of different combination of some aerodynamics add-on devices.
Technical Paper

FMS and AFCS Interface for 4D Trajectory Operations

2015-09-15
2015-01-2458
The future revolution of the air traffic system imposes the development of a new class of Flight Management Systems (FMS), capable of providing the aircraft with real-time reference flight parameters, necessary to fly the aircraft through a predefined sequence of waypoints, while minimizing fuel consumption, noise and pollution emissions. The main goal is to guarantee safety operations while reducing the aircraft environmental impact, according to the main international research programs. This policy is expected to affect also the Unmanned Aerial Systems (UASs), as soon as they will be allowed to fly beyond the restricted portions of the aerospace where they are currently confined. In the future, in fact, UASs are expected to fly within the whole civilian airspace, under the same requirements deriving from the adoption of the Performance Based Navigation (PBN).
Journal Article

A New Approach for the Estimation of the Aerodynamic Damping Characteristics of the ETF Demonstrator

2011-10-18
2011-01-2649
Nautilus S.p.A. and the Polytechnic of Turin, in cooperation with Blue Engineering, have developed a very versatile product, the ELETTRA Twin Flyers [6] (ETF), which consists in a very innovative remotely-piloted airship equipped with high precision sensors and communication devices. This multipurpose platform is particularly suitable for border and maritime surveillance missions and for telecommunication, both in military and civil area. To assess the actual maneuver capabilities of the airship [14], a prototype of reduced size and complexity has been assembled [16]. Before the flight tests a further assessment on the flight simulator is needed, because the first version of the software is tuned on the full scale prototype. Steady state performance and static stability of the demonstrator have been evaluated with CFD analysis.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
X