Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Technical Paper

Electromechanical Energy Scavenger for Automotive Tires

2011-04-12
2011-01-0097
This paper presents a multi-physic modeling of an electromechanical energy scavenging device able to supply energy inside car tires for wireless sensors. A permanent magnet, connected to the inner liner of a tire, is accelerated along a guide by the tire deformation during car motion; by interacting with coils it generates a power which is conditioned by a proper electronic interfaced to an external load. The original approach implemented in this kind of device is the nonlinear dynamic properties designed and controlled: adaptive resonance in function of car velocity is optimized for increasing its global efficiency. The energy conversion process takes into account the simulation of different phenomena such as: non linear dynamic and adaptive resonant behavior of the seismic mass, electromagnetic and magneto-static coupling between moving mass and coils, transfer of the generated power to an external load by means of a nonlinear circuit interface.
X