Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Improvement on Cylinder-to-Cylinder Variation Using a Cylinder Balancing Control Strategy in Gasoline HCCI Engines

2010-04-12
2010-01-0848
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Oil Transport Analysis of a Cylinder Deactivation Engine

2010-04-12
2010-01-1098
Engine cylinder deactivation is used to save engine pumping loss but raises oil consumption concerns for the deactivated cylinders. In this paper, general mechanisms of oil transport via piston rings are reviewed. The characteristic of oil transport and oil accumulation in a cylinder deactivation mode through the piston ring path are analyzed. Suggestions to reduce the oil transport to the combustion chamber in a deactivated cylinder are discussed. In a deactivated cylinder, the amount of oil brought into the combustion chamber by the top ring up-scraping due to the ring/bore conformability difference between intake stroke and compression stroke is much less compared to a firing cylinder. However, compared to a firing cylinder, a deactivated cylinder has more oil entering the combustion chamber through the top ring end gap and ring groove as a result of the lower cylinder gas pressure, lower ring temperature and more frequent top ring axial movements.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

Aerodynamic Development of a Successful NASCAR Winston Cup Race Car

1994-12-01
942521
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1989 through 1994 Chevrolet Lumina Winston Cup race car, and demonstrates the continuous improvements successfully used to respond to rule changes and competition. The development will be documented from construction of a prototype race car, through one third scale model testing, and the detail development required to continually improve performance and meet changing body rules which stringently limit body modifications. Despite these limitations, track and wind tunnel testing of development vehicles contributed to driver's and manufacturer's championships in the first racing season. The continuous improvement process, which includes ongoing wind tunnel and track tests, has resulted in improvement or at least maintenance of drag coefficient along with lift coefficient reduction of up to 0.050 each year.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Technical Paper

Synthesis of Chassis Parameters for Ride and Handling on the 1997 Chevrolet Corvette

1997-02-24
970097
This paper describes the performance attributes of the all-new front and rear SLA (short-long arm) suspensions, steering system, and tires of the 1997 Corvette. The process by which these subsystem attributes flowed down from vehicle-level requirements for ride and handling performance is briefly described. Additionally, where applicable, specific subsystem attributes are rationalized back to a corresponding vehicle-level performance requirement. Suspension kinematic and compliance characteristics are described and contrasted to those of the previous generation (1984 to 1996 Model Year) Corvette. Both synthesis/analysis activities as well as mule-level vehicle development work are cited for their roles in mapping out specific subsystem attributes and related vehicle performance.
Technical Paper

The Aerodynamic Optimization of a Successful IMSA GT Race Car

1996-12-01
962518
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1992 through 1995 Oldsmobile Cutlass Supreme IMSA GT race car and will demonstrate the continuous improvements successfully used to respond to rule changes and competition. The concerted effort by the sanctioning body to limit the aerodynamic performance of IMSA GT race cars for the 1995 season required a rigorous wind tunnel test program backed by track validation to maintain the necessary aerodynamic balance, cooling flows, engine induction flow, and overall competitive parity. The specific modifications that were evaluated to accommodate these rules changes will be detailed in this paper. Special test methodologies developed to better understand specific aerodynamics questions such as the effects of vehicle attitude, internal cooling flows, underbody treatments, and engine air inlet performance will also be discussed.
Technical Paper

Human Volunteer Testing of GM Air Cushions

1972-02-01
720443
From November 1970 through August 1971 an extensive program of static and dynamic air cushion inflation tests utilizing human volunteers was conducted at Holloman Air Force Base, New Mexico, sponsored by the Department of Transportation. Forty-one full cushion deployment static firings were made, with air cushion hardware and seating buck environment designed by General Motors. The static series was followed by 35 dynamic sled firings of human volunteers, beginning at 8.6 g (15.1 mph) and culminating at 21.7 g (31.5 mph). A major objective of both the static and dynamic test series was to identify changes in air-cushion design found necessary to improve its protective capability for human beings. Because of the severity of cushion deployment, one modification was made following the initial static tests: The orifice diameter size of the bag inlet was reduced from 1.0 to 0.6 in to diminish the rapidity of bag inflation. This modification proved effective in the dynamic series.
X