Refine Your Search

Topic

Author

Search Results

Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Simulating Neck Injury in Frontal Impact using LS-DYNA

2007-04-16
2007-01-0677
Neck injury assessment is part of the FMVSS208 requirements. Hardware tests are often conducted to validate whether the vehicle safety system meets the requirements. This paper presents a full vehicle finite element model using LS-DYNA, including structural components, restraint system components, and dummies. In the case of a frontal impact at 30deg angle, in the areas of neck compression, neck extension and neck kinematics, it is demonstrated that a good correlation is achieved between the response of a FE dummy in the model and those of ATDs in the physical hardware tests. It is concluded that the math tool may be applied to comprehend test and design variations that may arise throughout a vehicle development lifecycle and to help develop a vehicle restraint system.
Technical Paper

A Unified Approach to Forward and Lane-Change Collision Warning for Driver Assistance and Situational Awareness

2008-04-14
2008-01-0204
A unified approach to collision warning due to in-lane and neighboring traffic is presented. It is based on the concept of velocity obstacles, and is designed to alert the driver of a potential front collision and against attempting a dangerous lane change maneuver. The velocity obstacle represents the set of the host velocities that would result in collision with the respective static or moving vehicle. Potential collisions are simply determined when the velocity vector of the host vehicle penetrates the velocity obstacle of a neighboring vehicle. The generality of the velocity obstacle and its simplicity make it an attractive alternative to competing warning algorithms, and a powerful tool for generating collision avoidance maneuvers. The velocity obstacle-based warning algorithm was successfully tested in simulations using real sensor data collected during the Automotive Collision Avoidance System Field Operational Test (ACAS FOT) [10].
Technical Paper

Predicting Running Vehicle Exhaust Back Pressure in a Laboratory Using Air Flowing at Room Temperature and Spreadsheet Calculations

2009-04-20
2009-01-1154
In today’s highly competitive automotive environment people are always looking to develop processes that are fast, efficient, and effective. Moving testing from expensive prototype vehicles into the laboratory is an approach being implemented for many different vehicle subsystems. Specifically a process has recently been developed at General Motors that predicts exhaust back pressure performance for a running vehicle using laboratory testing and spreadsheet calculations. This paper describes the laboratory facility and procedure, the theory behind the calculations, and the correlation between vehicle test and laboratory based results. It also comments on the benefits of the process with respect to reduction in design iterations, quicker availability of results, and money savings.
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

High Capacity Electric A/C Compressor with Integrated Inverter for Hybrid Automotive and Commercial Vehicles

2008-10-07
2008-01-2619
The market growth for electric-hybrid passenger vehicles has been very significant and is expected to reach nearly 25% of all vehicles sold in the US by 2015. Hybrid commercial vehicles are also being developed by several OEM's. This paper discusses the progress of Delphi Thermal Systems in developing an integrated electric compressor drive with high cooling capacity (9 kW+), sufficient for large hybrid SUV's and commercial vehicles such as Class 8 tractors with sleeper. An important driver for use of the electric compressor in the hybrid truck application is the reduction of engine idling time while maintaining comfort in the cab or sleeper. Design details of a compact 5 kW SPM motor, its inverter drive, and issues related to its integration into the compressor housing are described. Test results are given confirming excellent performance.
Technical Paper

Design and CFD Analysis of an NHRA Funny Car Body

2008-12-02
2008-01-3003
This paper describes the methodology used to design and perform a CFD analysis of a Chevrolet Impala SS Funny Car body. This body was designed for the purpose of making it available for teams to race it in the National Hot Rod Association (NHRA) drag racing series beginning with the 2007 race season. Several challenges were presented in this project: (1) This was the first time a General Motors drag racing body for use in professional classes (Funny Car or otherwise) was ever designed in CAD. (2) The body was originally designed as a 2007 Chevrolet Monte Carlo. After the tooling was completed, changes in Chevrolet’s product lineup required that the body be changed to a 2007 Impala SS. (3) Budget constraints precluded CFD analysis until after the bodies were already being manufactured. There were several teams that raced the new body during the 2007 race season. One of these teams won the Funny Car Driver’s Championship.
Technical Paper

Optimization of the Stratified-Charge Regime of the Reverse-Tumble Wall-Controlled Gasoline Direct-Injection Engine

2004-03-08
2004-01-0037
An optimum combustion chamber was designed for a reverse-tumble wall-controlled gasoline direct-injection engine by systematically optimizing each design element of the combustion system. The optimization was based on fuel-economy, hydrocarbon, combustion-stability and smoke measurements at a 2000 rev/min test-point representation of road-load operating condition. The combustion-chamber design parameters that were optimized in this study included: piston-bowl depth, piston-bowl opening width, piston-bowl-volume ratio, exhaust-side squish height, bowl-lip draft angle, distance between spark-plug electrode and piston-bowl lip, spark-plug-electrode length, and injector spray-cone angle. No attempt was made to optimize the gross engine parameters such as bore and stroke or the intake system, since this study focused on optimizing a reverse-tumble wall-controlled gasoline direct-injection variant of an existing port-fueled injection engine.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

10 Year-Old Hybrid III ATD Positions in Panic Brake Conditions

2004-03-08
2004-01-0848
Panic braking can cause an “in-position” unbelted occupant to become “out-of-position.” Although the braking event dynamics and initial positioning of the occupant affect the final position at time of impact (if any), general trends are assumed. FMVSS208 now includes “out-of-position” (OOP) performance for Anthropomorphic Test Devices (ATDs) sizes twelve month to six year-old. Airbag suppression technologies currently address that range of OOP occupants. The objective of this study is to develop an approach to defining OOP test positions for the recently released 10 year old ATD and to assist restraint engineers in developing strategies to help reduce the risk of inflation induced injury to the larger out-of-position child. A series of panic brake tests was conducted with the 10 year-old Hybrid III to study panic braking kinematics. Antilock braking (ABS) generated the desired constant deceleration from high initial speeds (40 to 60mph) in three types of vehicles.
Technical Paper

A Novel Design Concept of a Lateral Sliding Bucket Seat on Roller Mechanisms

2003-10-27
2003-01-2753
A novel lateral sliding vehicle bucket seat was developed to address consumer needs for improved facile access to third row seats in minivans and sport utility vehicles. The concept provides for a second row bucket seat to slide laterally across a vehicle floor by roller mechanisms that roll across steel rails that transverse the vehicle floor. The system consists of two T-section type steel rails mounted parallel to each other at a distance equal to the seat riser support attachment features. The seat risers contain a roller mechanism that enables contact with the cylindrical portion of the steel rails. Each steel rail contains rectangular openings spaced appropriately to allow the seat latching mechanisms to engage securely. The seat riser supports at the rear include a releasable clamping mechanism hook that engages and disengages into the rectangular openings of the steel rails.
X