Refine Your Search

Topic

Author

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Technical Paper

Prediction of Brake Lining Life Using an Energy-Based CAE Approach

2007-04-16
2007-01-1019
Due to competitive pressures and the need to rapidly develop new products for the automotive marketplace, the automotive industry has to rapidly develop and validate automotive subsystems and components. While many CAE tools are employed to decrease the time needed for a number of brake engineering tasks such as stress analysis, brake system sizing, thermo-fluid analysis, and structural dynamics, brake lining wear and the associated concept of “lining life” are still predominantly developed and validated through resource intensive public road vehicle testing. The goal of this paper is to introduce and detail an energy-based, lumped-parameter CAE approach to predict brake lining life in passenger cars and light trucks.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
Technical Paper

Predicting Running Vehicle Exhaust Back Pressure in a Laboratory Using Air Flowing at Room Temperature and Spreadsheet Calculations

2009-04-20
2009-01-1154
In today’s highly competitive automotive environment people are always looking to develop processes that are fast, efficient, and effective. Moving testing from expensive prototype vehicles into the laboratory is an approach being implemented for many different vehicle subsystems. Specifically a process has recently been developed at General Motors that predicts exhaust back pressure performance for a running vehicle using laboratory testing and spreadsheet calculations. This paper describes the laboratory facility and procedure, the theory behind the calculations, and the correlation between vehicle test and laboratory based results. It also comments on the benefits of the process with respect to reduction in design iterations, quicker availability of results, and money savings.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Local Mechanical Property Variations of AZ31B Magnesium Sheet due to Elevated Temperature Forming

2009-04-20
2009-01-0864
The influence of elevated temperature forming on local mechanical properties of AZ31B magnesium (Mg) sheet material was investigated. The Mg sheet was formed into a closure component with high temperature gas pressure at 485°C. Miniature tensile testing specimens were cut from selected areas of the component where different levels of thinning occurred. The specimens were strained in tension to fracture using a miniature tensile stage. The two-dimensional strain distribution in the necking region along with true stress-true strain curves were computed using a digital image correlation technique to assess the influence of the forming-induced thinning on tensile strength and percent elongation at fracture.
Technical Paper

Optimization of the Stratified-Charge Regime of the Reverse-Tumble Wall-Controlled Gasoline Direct-Injection Engine

2004-03-08
2004-01-0037
An optimum combustion chamber was designed for a reverse-tumble wall-controlled gasoline direct-injection engine by systematically optimizing each design element of the combustion system. The optimization was based on fuel-economy, hydrocarbon, combustion-stability and smoke measurements at a 2000 rev/min test-point representation of road-load operating condition. The combustion-chamber design parameters that were optimized in this study included: piston-bowl depth, piston-bowl opening width, piston-bowl-volume ratio, exhaust-side squish height, bowl-lip draft angle, distance between spark-plug electrode and piston-bowl lip, spark-plug-electrode length, and injector spray-cone angle. No attempt was made to optimize the gross engine parameters such as bore and stroke or the intake system, since this study focused on optimizing a reverse-tumble wall-controlled gasoline direct-injection variant of an existing port-fueled injection engine.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Discussion of Fatigue Analysis Techniques in Automotive Applications

2004-03-08
2004-01-0626
This paper is targeted to engineers who are involved in predicting fatigue life using either the strain-life approach or the stress-life approach. However, more emphasis is given to the strain-life approach, which is commonly used for fatigue life analysis in the ground vehicle industry. It attempts to discuss, modify and extend approaches in fatigue analysis, so they are best suited for structural durability engineers. Fatigue analysis requires the use of material fatigue properties, stress or strain results obtained from finite element analyses or measurements, and load data obtained from multi-body dynamic analysis or road load data acquisition. This paper examines the effects of these variables in predicting fatigue life. Various mean stress corrections, along with their advantages and disadvantages are discussed. Different stress/strain combinations such as signed von Mises, and signed Tresca are examined. Also, advanced methods such as Fatemi-Socie and Bannantine are discussed.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry

2001-04-30
2001-01-1447
Elastomeric isolators are used in a variety of different applications to reduce noise and vibration. To use isolators effectively requires the product design and development engineer to satisfy multiple objectives, which typically include packaging restrictions, environmental criteria, limitations on motion control, load requirements, and minimum fatigue life, in addition to vibration isolation performance. An understanding of elastomeric material properties and the methods used to characterize elastomeric component behavior is necessary to achieve desired performance. Typical design criteria and functional objectives for various isolator applications, including powertrain mounts, suspension control arm bushings, shock absorber bushings, exhaust hangers, flexible couplings, cradle mounts, body mounts and vibration dampers are also discussed.
Technical Paper

Development of the SAE Biaxial Wheel Test Load File

2004-03-08
2004-01-1578
Recently published SAE Recommended Practice J2562 - SAE Biaxial Wheel Test standardized the terminology, equipment, and test procedure for the biaxial wheel test. This test was originally presented by Fraunhofer Institut Betriebsfestigkeit - LBF (Fraunhofer Institute for Structural Durability) in SAE paper 830135 “Automotive Wheels, Method and Procedure for Optimal Design and Testing”. The first release of SAE J2562 included a generic, scalable load file applicable to wheels designed for five to eight passenger vehicles with capacity to carry a proportional amount of luggage or ballast. Future releases of SAE J2562 would include two additional load files; one applicable to light trucks that have substantial cargo capacity and one for sports cars typically limited to two passengers and marginal luggage. This report details the process used to develop the SAE Biaxial Wheel Test Load File for passenger vehicles.
X