Refine Your Search

Topic

Affiliation

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

Liftgate Structure Optimization to Minimize Contribution to Low Frequency Interior Noise

2020-04-14
2020-01-1264
This paper presents the design development of a SUV liftgate with the intention of minimizing low frequency noise. Structure topology optimization techniques were applied both to liftgate and body FEA models to reduce radiated power from the liftgate inner surface. Topology results are interpreted into structural changes to the original liftgate and body design. Favorable results of equivalent radiated power (ERP) performance with reduced cost and mass is shown compared to baseline liftgate and baseline with tuned vibration absorber (TVA). This simulation includes finite element modeling of coupled fluid/structure interaction between the interior air cavity volume and liftgate structure. In addition to ERP minimization, multi-model optimization (MMO) was used on separate models simultaneously to preserve liftgate structural performance for several customer usage load cases.
Journal Article

Iterative Learning Algorithm Design for Variable Admittance Control Tuning of A Robotic Lift Assistant System

2017-03-28
2017-01-0288
The human-robot interaction (HRI) is involved in a lift assistant system of manufacturing assembly line. The admittance model is applied to control the end effector motion by sensing intention from force of applied by a human operator. The variable admittance including virtual damping and virtual mass can improve the performance of the systems. But the tuning process of variable admittance is un-convenient and challenging part during the real test for designers, while the offline simulation is lack of learning process and interaction with human operator. In this paper, the Iterative learning algorithm is proposed to emulate the human learning process and facilitate the variable admittance control design. The relationship between manipulate force and object moving speed is demonstrated from simulation data. The effectiveness of the approach is verified by comparing the simulation results between two admittance control strategies.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure

2018-04-03
2018-01-1026
This article covers an application of third-generation advanced high-strength steel (3GAHSS) grades to vehicle lightweight body structure development. Design optimization of a vehicle body structure using a multi-scale material model is discussed. The steps in the design optimization and results are presented. Results show a 30% mass reduction potential over a baseline mid-size sedan body side structure with the use of 3GAHSS.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Journal Article

Harmonizing and Rationalizing Lightweighting within Fuel Efficiency Regulations Across NA, EU and China

2017-03-28
2017-01-1297
This study emphasizes the fact that there lies value and potential savings in harmonizing some of the inherent differences between the USA, EU, and China regulations with respect to the role of vehicle mass and lightweighting within Fuel Economy (FE) and Green House Gas (GHG) regulations. The definition and intricacies of FE and mass regulations for the three regions (USA, EU, and China) have been discussed and compared. In particular, the nuances of footprint-based, curb-mass-based, and stepped-mass-based regulations that lead to the differences have been discussed. Lightweighting is a customer benefit for fuel consumption, but in this work, we highlight cases where lightweighting, as a CO2 enabler, has incentives that do not align with rational customer values. A typical vehicle’s FE performance sensitivity to a change in mass on the standard regional certification drive cycles is simulated and compared across the three regions.
Technical Paper

Creating Driving Scenarios from Recorded Vehicle Data for Validating Lane Centering System in Highway Traffic

2020-04-14
2020-01-0718
The adoption of simulation is critical to reducing development time and enhancing system robustness for Advanced Driver Assistance Systems (ADAS). Automotive companies typically have an abundance of real data recorded from a vehicle which is suitable for open-loop simulations. However, recorded data is often not suitable to test closed-loop control systems since the recorded data cannot react to changes in vehicle movement. This paper introduces a methodology to create virtual driving scenarios from recorded vehicle data to enable closed-loop simulation. This methodology is applied to test a lane centering application. A lane centering application helps a driver control steering to stay in the current lane and control acceleration and braking to maintain a set speed or to follow a preceding vehicle. The driver’s vehicle is referred to as the ego vehicle. Other vehicles on the road are referred to as target vehicles.
Technical Paper

Interactive Effects between Sheet Steel, Lubricants, and Measurement Systems on Friction

2020-04-14
2020-01-0755
This study evaluated the interactions between sheet steel, lubricant and measurement system under typical sheet forming conditions using a fixed draw bead simulator (DBS). Deep drawing quality mild steel substrates with bare (CR), electrogalvanized (EG) and hot dip galvanized (HDG) coatings were tested using a fixed DBS. Various lubricant conditions were targeted to evaluate the coefficient of friction (COF) of the substrate and lubricant combinations, with only rust preventative mill oil (dry-0 g/m2 and 1 g/m2), only forming pre-lube (dry-0 g/m2, 1 g/m2, and >6 g/m2), and a combination of two, where mixed lubrication cases, with incremental amounts of a pre-lube applied (0.5, 1.0, 1.5 and 2.0 g/m2) over an existing base of 1 g/m2 mill oil, were analyzed. The results showed some similarities as well as distinctive differences in the friction behavior between the bare material and the coatings.
Technical Paper

Development of GM Allison 10-Speed Heavy Duty Transmission

2020-04-14
2020-01-0438
This paper describes the development of the GM Allison 10-Speed Heavy Duty (HD) Transmission. The trend of increased towing capacity and engine horsepower in the automotive heavy-duty truck segment has been steadily climbing for the past 10 years. The development of 10-Speed HD Transmission is designed to be best in class in for towing performance in the 2500/3500 series segment while optimizing fuel economy. The 10-Speed HD Transmission also gives the customers the option to order an integrated power take-off (PTO) unit that benefits downstream installation of utility accessories such as hydraulic pumps, generators, etc.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Dynamics of Water Crossover in Fuel Cell and Application to Freeze Driveaway Reliability

2020-04-14
2020-01-0853
Reliable driveaway from frozen condition is one of the challenging design and control problem for fuel cell applications. Different approaches for warmup from frozen conditions have been developed by OEMs, e.g. low voltage inefficient operation, or use of coolant heaters. However, most methods result in water generation which risk icing and blocking the valves and rendering them nonfunctional till they thaw. One such valve is the anode drain valve which is needed to remove water that crosses over across the membrane to anode side. This work discusses characterization of dynamics of water crossover to anode balance of plant via step response experiments on full scale systems, and development of an online estimator to detect onset of anode water crossover via this online observer. In addition, detection via voltage dip-based feedback is also presented.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
X