Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Modeling the Effect of Elastic Modulus of the Second Phase Particle on Crack Propagation Using FECEM

2021-04-06
2021-01-0313
For the cases where perfect interface is not assumed and crack propagation path is unknown, the fully embedded zero-thickness cohesive element model (FECEM) is an alternative simulation method to model crack growth. In our newly developed FECEM model, the common element is triangle 3-node element under two-dimensional condition and the interface element is a quadrilateral cohesive element with zero thickness. From the simulation by FECEM, it is found that the elastic modulus of the second phase particle in a ductile matrix has a significant effect on crack propagation behavior. When the particle encounters the propagating crack, if it is softer than the matrix, the crack will be attracted towards the particle and then will puncture into it. If the particle is harder than the matrix, it will slow down the propagation of the crack.
Technical Paper

Modeling Quasi-Static Crack Using XFEM and FECEM

2021-04-06
2021-01-0311
Simulating quasi-static crack to obtain crack tip stress field is a criterion to evaluate whether a numerical simulation model is good at modeling discontinuous problems such as cracks. In this study, a fully embedded zero-thickness cohesive element model (FECEM) was developed based without assuming a perfect interface. By using XFEM (extended finite element method) and FECEM, respectively, 2-D finite element models were constructed to simulate the unilateral I-type and II-type cracks and mixed I-II type crack on 2-D rectangular plate. In XFEM simulation, J-integral was used to calculate the stress intensity factor on the crack tip, which was compared with the theoretical solution. Comparison of the simulated results by XFEM and FECEM models confirms that our newly developed FECEM model has a high reliability in simulating quasi-static crack without assuming a perfect interface.
X