Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study

2006-12-05
2006-01-3620
This paper investigates the aerodynamic simulation accuracy of several types of wind tunnel test sections. Computational simulations were performed with a closed wheel race car in an 11.0 m2 adaptive wall, a 16.8 m2 open jet, and a 29.7 m2 slotted wall test section, corresponding to model blockage ratios of 20.9%, 13.7%, and 7.7%, respectively. These are compared to a simulation performed in a nearly interference-free condition having a blockage ratio of 0.05%, which for practical purposes of comparison, is considered a free air condition. The results demonstrate that the adaptive wall most closely simulates the free air condition without the need for interference corrections. In addition to this advantage, the significantly smaller size of the adaptive wall test section offers lower capital and operating costs.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Advantages of Adaptive Wall Wind Tunnel Technology: A CFD Study for Testing Open Wheel Race Cars

2007-04-16
2007-01-1048
The primary advantage of an Adaptive Wall wind tunnel is that the test section walls and ceiling are contoured to closely approximate the ‘open road' flowfield around the test vehicle. This reproduction of the open road flowfield then results in aerodynamic forces and moments on the test vehicle that are consistent with actual open road forces and moments. Aerodynamic data measured in the adaptive wall test section do not require blockage corrections for adjusting the data to open road results. Extensive full scale experiments, published scale model studies, and Computational Fluid Dynamics (CFD) studies have verified the simulation capability of adaptive wall technology. For the CFD study described here, high-downforce, open-wheel race cars were studied. The numerical simulations with a race car in an Adaptive Wall Test Section (AWTS) wind tunnel are compared with simulations in ‘free air' condition and in a closed wall test section.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

The Plenum Method Versus Blockage Corrected Nozzle Method for Determining Climatic Wind Tunnel Air Speed

2004-03-08
2004-01-0668
Recently, computational fluid dynamics (CFD) was applied to investigate blockage (or velocity) corrections using the nozzle method for a climatic wind tunnel (CWT) test environment (SAE 2003-01-0936). The study included two blockage corrections to the nozzle method reference velocity: vehicle frontal velocity and vehicle upper surface pressure trace. These methods resulted in well correlated predictions between the open road and CWT flow conditions. These CFD predicted blockage corrections are experimentally verified in a climatic wind tunnel in this study. A non-intrusive method applying particle image velocimetry is applied to acquire the velocity field in front of the test vehicle. The experimental data verifies the blockage correction predictions derived from the previous CFD work.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Transitioning Automotive Testing from the Road to the Lab

2004-03-08
2004-01-1770
The importance of the automotive test facility has increased significantly due in large part to continuous pressure on manufactures to shorten product development cycles. Test facilities are no longer used only for regulatory testing, or development testing in which the effects of small design changes (A-to-B testing) are determined; automotive manufacturers are beginning to use these facilities for final design validation, which has traditionally required on road testing. A host of resources have gone into the design and construction of facilities with the capability to simulate nearly any environment of practical importance to the automotive industry. As a result, there are now a number of test facilities, and specifically wind tunnels, in which engineers can test most aspects of a vehicle's performance in real-world environments.
Technical Paper

Design of an Advanced Heavy Tactical Truck: A Target Cascading Case Study

2001-11-12
2001-01-2793
The target cascading methodology is applied to the conceptual design of an advanced heavy tactical truck. Two levels are defined: an integrated truck model is represented at the top (vehicle) level and four independent suspension arms are represented at the lower (system) level. Necessary analysis models are developed, and design problems are formulated and solved iteratively at both levels. Hence, vehicle design variables and system specifications are determined in a consistent manner. Two different target sets and two different propulsion systems are considered. Trade-offs between conflicting targets are identified. It is demonstrated that target cascading can be useful in avoiding costly design iterations late in the product development process.
X