Refine Your Search

Topic

Author

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

SPOT WELD FATIGUE DURABILITY PERFORMANCE EVALUATION THROUGH THE USE OF FEA

2009-10-06
2009-36-0189
The sheet metal joining through spot welding is the most widely used process for automotive body building, where an average vehicle has around 5,000 spot welding points in its structure. In this sense, the spot welding project is critical to the final product performance and it must be done in a way that can assure both quality and durability of the vehicle, already taking into consideration the fact that the spot weld mechanical properties related to fatigue and rupture resistance are much lower when compared to other available welding techniques like MIG welding for example. These properties have a direct impact in the fatigue durability and crashworthiness properties of the vehicle, as a significant part of the structural resistance goes through these spot welds. With this scenario, the correct application of FEA techniques is very important to assure that the projected joints and spot weld disposition meet the product targets in terms of safety and durability.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Power Semiconductors for Starter-Alternator Systems

2001-03-05
2001-01-0958
Modern semiconductor devices enable highly efficient conversion of electrical power. Together with the microcontroller, they are the key elements for generation of the alternating currents from the car's DC supply that are necessary to drive high-performance units such as starter-alternators. These allow the combustion engine to crank up in several 100 ms and deliver up to 15 kW of electrical power. Smart driver ICs such as the TLE6280 enable the fast development of the interface between the microcontroller and the power switches. Currents of some 100A can be handled with the new OptiMOS FETs. Their rugged and ultra-low ohmic technology and their innovative packaging concepts, such as Power Modules and Power-Bonded MOSFETs, allow the building of compact and efficient control units.
Technical Paper

Damper Analysis using Energy Method

2002-11-19
2002-01-3536
The force x velocity graph is the most used tool for suspension damper analysis. This approach hides important information regarding the bleeds / spring / orifice combination. This paper describes the energy analysis, comparing two different damper suppliers, with comfort measurements using B&K Human Response Vibration Meter and MTS single channel Four Post system.
Technical Paper

Current Control Strategies for Quasi-Autonomous Gate Driver

2002-03-04
2002-01-0472
Infineon proposes a Quasi-Autonomous Gate Driver (QAGD) to manage an electrically actuated component, whether electromechanical, electromagnetic, or electrohydraulic. This paper examines some current control strategies that can be implemented within the QAGD, such as: Synchronous Sampling (SYSA), Hysteresis, Improved Synchronous Sampling-Hysteresis (ISSH), Suboscillation, Suboscillation with Back EMF Feedforward (SBEF) and Synchronous Control in Rotation Coordinates (SCRC). Analysis and simulation of these strategies indicate their advantages and disadvantages, which are then summarized in a comparison chart, from which the best solution for a given application can be determined. The QAGD IC proposed by Infineon adopts this solution by integrating the current controller and the driver unit for the MOSFETs in a single package. The inverter function can therefore be implemented using one QAGD and several MOSFETs, which greatly simplify the system and decrease the costs.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Technical Paper

High Power Cell for Mild and Strong Hybrid Applications Including Chevrolet Malibu

2017-03-28
2017-01-1200
Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Study of a Relationship between Upper Body Mass and its Stiffness, in Order to Support the Platform Selection for Future Programs

2012-10-02
2012-36-0166
Body in White (BIW) torsional stiffness is an important parameter for passenger vehicles, influencing its behavior regarding Noise, Vibration & Harshness (NVH), durability and handling. A BIW with high stiffness may impact mass and cost since it would be necessary to add reinforcements and/or increase thickness of the panels with more contribution for this parameter. An OEM (Original Equipment Manufacturer) may have to choose an existing platform to continue a particular vehicle family and this decision will be based on mass and costs. This work aims to study a relationship between mass and stiffness of some platforms, trying to give an auxiliary parameter to help in the OEM's decision, differentiating the stiffness of the lower (platform) and upper body.
Technical Paper

Design for Six Sigma (DFSS): a technical and economical analysis of its application in the Vehicle Development Process

2004-11-16
2004-01-3308
The existent competitiveness in the automobile industry has been taking their manufacturers to an incessant search for methods and processes that seek the production of vehicles with quality and accessible costs to their costumers. The Vehicle Development Process (VDP) became an essential element for the success of a vehicle in the market, because the companies found out that, when concentrating their efforts during the development phase, the opportunities for product improvement will be much less onerous when compared with the costs spent when the vehicle are already in production. On the other hand, those improvement opportunities are evidently more difficult of be pointed during VDP than when the vehicle is already in production. This article aims to evaluate how the Design for Six Sigma (DFSS) methodology can be applied to the vehicle development process in order to provide significant results in terms of quality improvement, cost optimization and reduction of development timing.
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

GPTA - A Flexible New Timer Approach for Automotive Applications

2000-03-06
2000-01-1240
Today's requirements for engine management controllers are increasing in various aspects. Stronger emission standards and diagnosis requirements demand more complex control algorithms, faster system response times, better usage of sensor information throughout the system and higher accuracy of actuator stimuli. Despite that, new solutions are needed to answer the requirement for higher cost effectiveness, flexibility and reusability. The trade-off between cost and functionality is constantly being reviewed when choosing the right microcontroller to operate with an ECU. Integration of more complex and flexible functionality into the microcontroller helps to reduce the need for custom ASICs and thus reduce the overall system cost. In order to reduce the demands on CPU throughput within the microcontroller, manufacturers have introduced smart peripherals that off-load some of the work of the CPU into the peripherals.
X