Refine Your Search

Topic

Search Results

Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Journal Article

Advanced Heat Transfer and Underhood Airflow Investigation with Focus on Continuously Variable Transmission (CVT) of Snowmobiles

2017-06-28
2017-01-9180
The presented paper focuses on the computation of heat transfer related to continuously variable transmissions (CVTs). High temperatures are critical for the highly loaded rubber belts and reduce their lifetime significantly. Hence, a sufficient cooling system is inevitable. A numerical tool which is capable of predicting surface heat transfer and maximum temperatures is of high importance for concept design studies. Computational Fluid Dynamics (CFD) is a suitable method to carry out this task. In this work, a time efficient and accurate simulation strategy is developed to model the complexity of a CVT. The validity of the technique used is underlined by field measurements. Tests have been carried out on a snowmobile CVT, where component temperatures, air temperatures in the CVT vicinity and engine data have been monitored. A corresponding CAD model has been created and the boundary conditions were set according to the testing conditions.
Journal Article

Novel Range Extender Concepts for 2025 with Regard to Small Engine Technologies

2011-11-08
2011-32-0596
Energy politics and environmental circumstances demand novel strategies for private transport. Several studies have shown that one of these possibilities can be an electric vehicle with a range extender - REX. Today these REX engines are under way as derivation from modern internal combustion engines. As the need for an optimized usage of energy will further increase in the future, alternative energy converter systems have to be investigated. For DENSO, as supplier of components, it is of strong interest how the basic layout of these concepts could look like. This is necessary in order to be prepared for the specific needs of these concepts in terms of auxiliaries, electric / electronic components as well as for the cabin climate & various control strategies. In these REX-concepts all energies have to be considered. A sophisticated usage of energy inside a REX vehicle is required which leads to the investigation of a combined heat and power usage on-board.
Journal Article

Different Speed Limiting Strategies for 50cm3 Two-Wheelers and Their Impacts on Exhaust Emissions and Fuel Economy

2011-11-08
2011-32-0587
Usually the power output of 50 cm₃ two wheelers is higher than necessary to reach the maximum permitted vehicle speed, making engine power restriction necessary. This publication deals with different power restriction strategies for four-stroke engines and their effect on exhaust emissions. Alternative power limitation strategies like EGR and leaning were investigated and compared with the common method of spark advance reduction to show the optimization potential for this certain engine operation conditions. From these tests, a substantial set of data showing the pros and cons in terms of emissions, combustion stability and fuel economy could be derived for each speed limiting technique.
Technical Paper

Automatic Optimization of Pre-Impact Parameters Using Post Impact Trajectories and Rest Positions

1998-02-23
980373
When vehicle to vehicle collisions are analyzed using a discrete kinetic time forward simulation, several simulation runs have to be performed, to find a solution, where post impact trajectories and rest positions correspond with the real accident. This paper describes in detail a method to vary the pre-impact parameters automatically and to evaluate the simulation results. In a first step the different pre-impact parameters are discussed. Their influence on the impact and the post impact movement is shown. Furthermore the necessary specifications to define the post crash movement are presented. The necessity to define tire marks and rest positions of the vehicles involved is outlined. An effective evaluation criteria is derived, which is used to calculate a simulation error. This error is then used as a target function to control the optimization process. Two different optimization strategies are presented.
Technical Paper

Advances in Automated Coupling of CFD and Radiation

2008-04-14
2008-01-0389
Research and development engineers have paid much attention to coupling commercial tools for examining complex systems, recently. The purpose of this paper is to demonstrate an automated coupling of a CFD program with a commercial thermal radiation tool. Based on a previous work the coupling behaviour of a parallelized CFD code is being demonstrated. The automation thus speeds up the calculation procedure even for transient simulations not relying on codes of just one vendor. The simulation is then compared with measurements of temperatures of an actual SUV and conclusions are drawn.
Technical Paper

Size distribution of particulate matter~Results from roadside measurements

2001-09-23
2001-24-0078
Measurements of ultrafine particles (diameter < 300 nm) and total suspended particulates (TSP) were performed in 2 tunnels (Lundby, Gothenborg, S, and Plabutsch, Graz, A). The measurements in the Lundby tunnel were performed directly in the tunnel tube at the roadside whereas the measurements at the Plabutsch tunnel took place at the top of a 90 m high ventilation shaft. There was good correlation for all diameters (7.91 nm - 300 nm) between ultrafine particles and TSP for the measurements at the Lundby tunnel. At the Plabutsch site a correlation between ultrafine particles and TSP was detected only for particles > 35 nm. The maximum of the particle size distribution function for Lundby was at 30 nm and for the Plabutsch tunnel at 80 nm.
Technical Paper

Optimization Approach to Handle Global CO2 Fleet Emission Standards

2016-04-05
2016-01-0904
A worldwide decrease of legal limits for CO2 emissions and fuel economy led to stronger efforts for achieving the required reductions. The task is to evaluate technologies for CO2 reduction and to define a combination of such measures to ensure the targets. The challenge therefor is to find the optimal combination with respect to minimal costs. Individual vehicles as well as the whole fleet have to be considered in the cost analysis - which raises the complexity. Hereby, the focus of this work is the consideration and improvement of a new model series against the background of a fleet and the selection of measures. The ratio between the costs and the effect of the measures can be different for the each vehicle configuration. Also, the determination of targets depends whether a fleet or an individual vehicle is selected and has impact on the selection and optimization process of those measures.
Technical Paper

System Design Model for Parallel Hybrid Powertrains using Design of Experiments

2018-04-03
2018-01-0417
The paper focuses on an optimization methodology, which uses Design of Experiments (DoE) methods to define component parameters of parallel hybrid powertrains such as number of gears, transmission spread, gear ratios, progression factor, electric motor power, electric motor nominal speed, battery voltage and cell capacity. Target is to find the optimal configuration based on specific customer targets (e.g. fuel consumption, performance targets). In the method developed here, the hybrid drive train configuration and the combustion engine are considered as fixed components. The introduced methodology is able to reduce development time and to increase output quality of the early system definition phase. The output parameters are used as a first hint for subsequently performed detailed component development. The methodology integrates existing software tools like AVL CRUISE [5] and AVL CAMEO [1].
Technical Paper

An Approach for Evaluating Rolling Resistance in Kart Racing Tires

2021-04-06
2021-01-0936
Drivetrain electrification is increasing in the kart racing sector since noise emissions are an important factor in urban areas. To improve range, it has become necessary to optimize the rolling resistance of kart racing tires. This paper introduces a parameter study for small bias-ply tires which are used in kart racing and investigates the effect of these parameters on rolling resistance. In recent literature, rolling resistance is mostly examined in radial passenger car tires. Most testing devices are limited to rim sizes from ten inches upwards. In this study, a test rig was developed with focus on low cost and small rim sizes. This self-developed test rig was validated through a comparison with an approved test rig according to ISO 18164 standard. A parameter study was conducted to investigate the effect of changes in the construction of the tire. These changes affect the warp count of the carcass fabric and the crown angle of the different plies.
Technical Paper

Application and Validation of the 3D CFD Method for a Hydrogen Fueled IC Engine with Internal Mixture Formation

2006-04-03
2006-01-0448
Hydrogen is seen as a promising energy carrier for a future mobility scenario. Applied as fuel in IC engines with internal mixture formation, hydrogen opens up new vistas for the layout of the combustion system. The 3D CFD simulation of internal mixture formation as well as combustion helps to understand the complex in-cylinder processes and provides a powerful tool to optimize the engine's working cycle. The performance of standard simulation models for mixture formation as well as the performance of a user-defined combustion model applied in a commercial CFD-code is discussed within this article. The 3D CFD simulations are validated with measurements obtained from a thermodynamic and from an optical research engine respectively.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. When reconstructing car accidents, quite often questions arise regarding occupant movement and loading. Especially important is the influence of different types of restraint systems on the occupant. MADYMO® is a software tool which was developed by TNO in the Netherlands and which is well known in the automotive industry for the simulation of occupant movement. It allows the simulation of all kinds of modern restraint systems such as airbags and seatbelts with and without pretensioners. As the software is used in the automotive industry quite extensively, a huge validated database of dummy and human models is available. Since MADYMO® demands the setup of quite complicated input files, its use normally requires a high level of expertise.
Technical Paper

Experimental Verification and Drivability Investigations of a Turbo Charged 2-Cylinder Motorcycle Engine

2014-11-11
2014-32-0112
There are several reasons for equipping an internal combustion engine with a turbo-charger. The most important motivation for motorcycle use is to increase the power to weight ratio. Focusing on the special boundary conditions of motorcycles, like the wide engine speed range or the extraordinarily high demands on response behavior, automotive downsizing technologies cannot be transferred directly to this field of application. This led to the main question: Is it possible to design a turbo-charged motorcycle engine with satisfactory drivability and response behavior? The layout of the charged motorcycle engine was derived by simulation and had to be verified by experimental investigations. Main components, like the turbo charger or the waste gate control as well as the influence of the increasing back pressure on the combustion, were verified by test bench measurements. Afterwards the operation strategy in general was investigated and applied to the prototype engine.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Technical Paper

The Potential of Key Process/Performance Indicators (KPIs) in Automotive Software Quality Management

2016-04-05
2016-01-0046
A steady increasing share and complexity of automotive software is a huge challenge for quality management during software development and in-use phases. In cases of faults occurring in customer’s use, warranty leads to product recalls which are typically associated with high costs. To avoid software faults efficiently, quality management and enhanced development processes have to be realized by the introduction of specific analysis methods and Key Process/Performance Indicators (KPIs) to enable objective quality evaluations as soon as possible during product development process. The paper introduces an application of specific analysis methods by using KPIs and discusses their potential for automotive software quality improvement. Target is to support quality evaluation and risk-analysis for the release process of automotive software.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Journal Article

A New Approach for the Reduction of Aerodynamic Drag of Long-Distance Transportation Vehicles

2013-09-24
2013-01-2414
The optimization of aerodynamic drag represents an important research area for the fuel consumption reduction of heavy duty commercial vehicles. Today's design of tractor-trailers is significantly influenced by legal conditions regarding the vehicle dimensions and the provision of a maximum transportation volume. These boundary conditions lead to brick-shaped trailer outer geometries, especially at the rear ends. That is the reason why the investigations of aerodynamic optimization of commercial vehicle trailers are predominantly restricted to detail measures up to now. The present publication treats the aerodynamic characteristics of general modifications on the outer contour of long-distance haulage trailers in regard of reducing the drag resistance and, thus, potentially also the fuel consumption in highway traffic. A new approach for the realization of a variable outer contour of trailers provides the possibility to adjust the rear end to an aerodynamically optimized shape.
X