Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Proof of Concept High Lift Heat Pump for a Lunar Base

1998-07-13
981683
When a permanent human outpost is established on the Moon, various methods may be used to reject the heat generated by the base. One proposed concept is the use of a heat pump operating with a vertical, flow-through thermal radiator mounted on a Space Station type habitation module [1]. Since the temperature of the lunar surface varies over the day, the vertical radiator sink temperatures can reach much higher levels than the comfort and even survivability requirements of a habitation module. A high temperature lift heat pump will not only maintain a comfortable habitation module temperature, but will also decrease the size of the radiators needed to reject the waste heat. Thus, the heat pump will also decrease the mass of the entire thermal system. Engineers at the Johnson Space Center (JSC) have tested a High Lift Heat Pump design and are developing the next generation heat pump based on information and experience gained from this testing.
Technical Paper

High Temperature Lift Heat Pump Refrigerant and Thermodynamic Cycle Selection

1994-06-01
941272
This paper describes the process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275K from a habitable volume when the external thermal environment is severe. For example, a long term habitat will reject heat from a space radiator to a 325K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components and the power supply system.
Technical Paper

Development of the Pump and Flow Control Subassembly for the Space Station Photovoltaic Thermal Control

1996-07-01
961388
The International Space Station Alpha Electrical Power System has a thermal control system to remove heat from the batteries and power distribution electronics. A major subsystem of this thermal loop is the Pump and Flow Control Subassembly (PFCS) which functions as an ammonia fluid distribution and control subsystem. This paper will detail the development, construction and operational performances of the PFCS hydraulic elements operating with an ammonia fluid. These elements include flow meter, accumulator, flow control valve, and pumps. The electronics which are utilized to operate these hydraulic elements will also be described. The combination of these hydraulic and electronic elements form a subassembly to safely control a hazardous, low viscosity fluid.
Technical Paper

Problems of Developing Systems for Water Reclamation from Urine for Perspective Space Stations

1996-07-01
961409
The paper deals with possible performance enhancement of the system for water reclamation from urine based on a principle of atmospheric distillation. It is shown by way of example using the system operating on Mir that the introduction of heat energy recuperation, an increase in heat-and-mass transfer efficiency on evaporation and the optimization of the air flowrate in the distillation cycle allow a rise in the capacity of the distillation assembly and a reduction in specific energy. The system outfitted with a rotary evaporator/separator and a thermoelectric heat pump is reviewed. The design and experimental data verify the feasibility and benefits of the system updating.
Technical Paper

Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

2005-07-11
2005-01-2863
A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gas/liquid separation and pump the liquid from 69 kPa (10 psia) at the gas/liquid interface to 124 kPa (18 psia) at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump (DSP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor[1].
Journal Article

Minimizing EVA Airlock Time and Depress Gas Losses

2008-06-29
2008-01-2030
This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas.
X