Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

2007-07-09
2007-01-3038
Advanced water processors being developed for NASA's Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS), and is based primarily on ISS experience related to the development of the VRA.
X