Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Integrated Chassis Design Procedure Using the PIDO Technology

2008-04-14
2008-01-0884
The study presented in this paper proposes an integrated and automated chassis design process, in which the associated design and analysis, including kinematic design and controller calibration, are sequentially performed through three steps. The first step is an automated kinematic design process that optimizes the hardpoints' coordinates and bush properties. First, ADAMS/Car is employed to evaluate the K&C characteristics by varying arrangements of the hardpoints and bush properties. In addition, a bush stiffness curve is approximated and represented by four parameters, allowing a designer to incorporate the curve as the design variables in the optimization process. Second, an optimization process is employed to automate the calibration of the UCC system modeled by Simulink, which is essential in improving the vehicle's dynamic behavior.
Technical Paper

Implementing the Milliken Moment Method using Controlled Dynamic Simulation

2005-04-11
2005-01-0417
The Milliken Moment Method (MMM) can be used to quantify the constraints imposed on vehicle stability and controllability by front and rear tire traction limitations. The main aspect of the Milliken Moment Method is the plot of vehicle's yaw moment versus lateral acceleration for given vehicle sideslip and steering angle ranges. This plot is typically called the Milliken Moment Diagram (MMD). This paper proposes a dynamic simulation approach to implementing the MMM that emulates the traditional experimental one. The approach embeds a vehicle dynamics model in a control loop that maintains a constant desired sideslip angle, and integrates the resulting controlled vehicle system model in time to generate the MMD.
X