Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Robust Stability Control System for a Hybrid Electric Vehicle Equipped with Electric Rear Axle Drive

2016-04-05
2016-01-1649
Optimizing/maximizing regen braking in a hybrid electric vehicle (HEV) is one of the key features for increasing fuel economy. However, it is known [1] that maximizing regen braking by braking the rear axle on a low friction surface results in compromising vehicle stability even in a vehicle which is equipped with an ESP (Enhanced Stability Program). In this paper, we develop a strategy to maximize regen braking without compromising vehicle stability. A yaw rate stability control system is designed for a hybrid electric vehicle with electric rear axle drive (ERAD) and a “hang on” center coupling device which can couple the front and rear axles for AWD capabilities. Nonlinear models of the ERAD drivetrain and vehicle are presented using bond graphs while a high fidelity model of the center coupling device is used for simulation.
Technical Paper

Engine-Out Emissions Characteristics of a Light Duty Vehicle Operating on a Hydrogenated Vegetable Oil Renewable Diesel

2020-04-14
2020-01-0337
We assessed the engine-out emissions of an ultra-low sulfur diesel (ULSD) and a neat hydrogenated vegetable oil (HVO) from a light-duty diesel truck equipped with common rail direct injection. The vehicle was tested at least twice on each fuel using the LA-92 drive cycle and at steady-state conditions at 30 mph and 50 mph at different loads. Results showed reductions in the engine-out total hydrocarbon (THC), carbon monoxide (CO), nitrogen oxide (NOx), and particulate emissions with HVO. The reductions in soot mass, solid particle number, and particulate matter (PM) mass emissions with HVO were due to the absence of aromatic and polyaromatic hydrocarbon compounds, as well as sulfur species, which are known precursors of soot formation. Volumetric fuel economy, calculated based on the carbon balance method, did not show statistically significant differences between the fuels.
Journal Article

Evaluation and Modification of Constant Volume Sampler Based Procedure for Plug-in Hybrid Electric Vehicle Testing

2011-08-30
2011-01-1750
Plug-in hybrid electric vehicles (PHVs) consume both fossil fuel and grid electricity, which imposes emission testing challenges on the current constant volume sampler (CVS) test method. One reason is that in the charge-depleting cycle, PHVs having all-electric range operate the engine for a small portion of the traction energy need, causing the CVS to overdilute the exhaust gas. The other reason is that the dilution factor (DF) in the EPA calculation has an error caused by ignoring the CO₂ concentration in ambient air. This paper evaluates these challenges by testing a Toyota PHV on the industry standard CVS system combined with additional continuous sampling methodology for continuous diluents, smooth approach orifice (SAO) measurement for ambient air flow, and fuel flow meter (FFM) measurement for fuel consumption. The current EPA DF can produce an error resulting in higher mass calculation.
Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

Critical Issues in Quantifying Hybrid Electric Vehicle Emissions and Fuel Consumption

1998-08-11
981902
Quantifying Hybrid Electric Vehicle (HEV) emissions and fuel consumption is a difficult problem for a number of different reasons: 1) HEVs can be configured in significantly different ways (e.g., series or parallel); 2) the Auxiliary Power Unit (APU) can consist of a wide variety of engines, fuel types, and sizes; and 3) the APU can be operated very differently depending on the energy management system strategy and the type of driving that is performed (e.g., city vs. highway driving). With the future increase of HEV penetration in the vehicle fleet, there is an important need for government agencies and manufacturers to determine HEV emissions and fuel consumption. In this paper, several critical issues associated with HEV emissions and fuel consumption are identified and analyzed, using a sophisticated set of HEV and emission simulation modeling tools.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

A Fuel Control Strategy that Optimizes the Efficiency of a Direct-Methanol Fuel Cell in an Automotive Application

1999-08-17
1999-01-2913
For automotive applications, it is necessary to maximize the fuel conversion efficiency of a PEM direct-methanol fuel cell (DMFC) over the broadest possible dynamic range of power. The research reported here critically examines the efficiency of the DMFC stack when operated over a broad power range. This research establishes a basis for a control strategy that simultaneously: optimizes DMFC fuel conversion efficiency versus power level, leads into a system level optimization of efficiency vs. power, and provides an operational strategy for controlling a direct-methanol fuel cell for maximum fuel efficiency from minimum to maximum power demand. First, there is an explanation of the experimental conditions used to obtain the DMFC experimental data that is reported and analyzed. Next the DMFC methanol crossover phenomenon is discussed and characterized. Then the conceptual framework for the optimization of fuel conversion efficiency is presented.
Technical Paper

Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary?

1999-03-01
1999-01-0530
The question of whether or not direct-hydrogen fuel cell systems in automotive applications should be used in load following or load leveled (battery hybrid) configurations is addressed. Both qualitative and quantitative analyses are performed to determine the potential strengths and weaknesses of each option. It is determined that the amount of energy that can be recovered through regenerative braking has a strong impact on the relative fuel economy of load following versus load leveled operation. Further, it is demonstrated that driving cycles with lower power requirements will show an improvement in vehicle fuel economy from hybridization while those with higher power requirements will not. Finally it is acknowledged that the practical considerations of cost and volume must also weigh heavily into the decision between the two configurations.
X