Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Diesel Spray Penetration and Velocity Measurements

2008-10-06
2008-01-2478
This study is presenting a comparative spray study of modern large bore medium speed diesel engine common rail injectors. One subject of paper is to focus on nozzles with same nominal flow rate, but different machining. The other subject is penetration velocity measurements, which have a new approach when trying to understand the early phase of transient spray. A new method to use velocimetry for spray tip penetration measurements is here introduced. The length where spray penetration velocity is changed is found. This length seems to have clear connection to volume fraction of droplets at gas. These measurements also give a tool to divide the development of spray into acceleration region and deceleration region, which is one approach to spray penetration. The measurements were performed with backlight imaging in pressurized injection test rig at non-evaporative conditions. Gas density and injection pressure were matched to normal diesel engine operational conditions.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Snow surface model for tire performance simulation

2000-06-12
2000-05-0252
New tire model is under development in European Commission research project called VERT (Vehicle Road Tire Interaction, BRPR-CT97-0461). The objective of the project is to create a physical model for tire/surface contact simulation. One of the subtasks has been to develop a method for snow surface characterization. The aim is simulate winter tire on snow surface with FEM software. This kind of simulation has been earlier done with snow model parameters from laboratory experiments. A snow shear box device has been developed in Helsinki University of Technology to measure mechanical properties of snow in field conditions. Both shear and compression properties can be measured with the device. With the device, a large number of snow measurements have been done at the same time with VERT winter tire testing in Nokian Tyres'' test track in Ivalo Finland. Measurement data have been postprocessed afterwards and parameters for material models have been evaluated.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

Influence of the Piston Inter-ring Pressure on the Ring Pack Behaviour in a Medium Speed Diesel Engine

2005-10-24
2005-01-3847
The present work aims to determine the gas pressure acting in the ring pack area in a medium-speed four stroke diesel engine. The experimental part of the study was carried out as firing engine tests, with an instrumented piston, with telemetric data transmission, and an instrumented cylinder liner in a 6-cylinder test engine. The results, in terms of inter-ring gas pressure are compared with the results of computer simulations. Moreover, the computer simulations were carried out to predict and compare the effects of the piston running clearance and the ring face wear on the inter-ring pressures. The study comprises aspects on inter-ring pressures under a set of loads. The measured inter-ring gas pressures indicate steady ring operation. The simulation results show good agreement with measurement results.
Technical Paper

Cylinder Charge, Initial Flow Field and Fuel Injection Boundary Condition in the Multidimensional Modeling of Combustion in Compression Ignition Engines

2004-10-25
2004-01-2963
Cylinder charge, cylinder flow field and fuel injection play the dominant roles in controlling combustion in compression ignition engines. Respective computational cylinder charge, initial flow field and fuel injection boundary affect combustion simulation and the quality of emission prediction. In this study the means of generating the initial values and boundary data are presented and the effect of different methods is discussed. This study deals with three different compression ignition engines with cylinder diameters of 111, 200 and 460 mm. The initial cylinder charge has been carefully analyzed through gas exchange pressure recordings and corresponding 1-dimensional simulation. The swirl generated by intake ports in a high-speed engine is simulated and measured. The combustion simulation using a whole cylinder model was compared with a sector model simulation result.
Technical Paper

High Speed Data Acquisition for Real Time Feedback in a Light Duty Engine Combustion-Mode Switching Application

2023-04-11
2023-01-0732
The paper describes the integration of a high-speed data acquisition and diagnostics controller used in an advanced engine platform. The controller enables ultra-low emissions and new benchmarks of engine efficiency while running a Gasoline Compression Ignition (GCI) cycle on a 2.2L, 4-cylinder engine. The system enables real-time combustion feedback and vibration analysis in engines. The paper focuses on: (1) the development of an interpolative sampling algorithm for transposition of time acquired data to the crank angle domain using a production crank sensor (60-2 tooth wheel); (2) the control unit, high-speed data acquisition, communication rates between the dedicated data acquisition and base controller to ensure cycle-to-cycle feedback; and, (3) validation exercises using cylinder pressure measurements.
X