Refine Your Search

Topic

Search Results

Journal Article

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

2014-09-30
2014-01-2449
This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations. Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR).
Technical Paper

Optimal Design for Maximum Fundamental Frequency and Minimum Intermediate Support Stiffness for Uniform and Stepped Beams Composed of Different Materials

2020-02-06
2020-01-5014
The minimum support stiffness that achieves the maximum modal frequencies or critical speed is very important in the design of mechanical systems. The optimal values of the intermediate support stiffness and geometrical parameters of uniform and stepped Timoshenko beams composed of single or two materials are studied in order to maximize the modal frequency and minimize the intermediate support stiffness. Dynamic stiffness matrix (DSM) method and multi-objective particle swarm optimization (MOPSO) algorithm are used together to evaluate new optimal parameters. For single material, the results show that for uniform thick beams, the optimal maximum fundamental frequency and minimum intermediate support stiffness are lower than those of Bernoulli-Euler beams. In addition, the optimal design for stepped beams made of two metallic materials is investigated. For three different metallic combinations, gain factors of 1.561 to 2.745 are obtained for a beam without intermediate support.
Technical Paper

A Tire Work Load (TWL) Based Controller for Active Independent Front Steering System (AIFS)

2020-04-14
2020-01-0648
Vehicle Handling performance depends on many parameters. One of the most important parameters is the dynamic behavior of the steering system. However, steering system had been enhanced thoroughly over the past decade where Active Front Steering (AFS) is now present and other system as Active Independent Front Steering (AIFS) is currently in the research phase. Actually, AFS system adopt the front wheels’ angles base on the actual input steering angle from the driver according to vehicle handling dynamics performance. While, the AIFS controls the angle of each front wheel individually to avoid reaching the saturation limits of any of the front wheels’ adhesion. In this paper modeling and analysis of an AIFS is presented with Tire Work Load (TWL) based controller. Magic Formula tire model is implemented to represent the tire in lateral slip condition.
Technical Paper

Performance and Noise of Dual Fuel Engine Running on Cottonseed, Soybean Raw Oils and Their Methyl Esters as Pilot Fuels

2020-04-14
2020-01-0811
The cottonseed oil, soybean oil and their methyl esters have been used as a pilot fuels for dual fuel engine running on the LPG as the main fuel. A variable compression research diesel engine has been converted to run on dual fuel of LPG and a pilot fuel derived from the renewable liquid fuels above. The engine has been instrumented to measure the combustion pressure, crank angles, exhaust temperature, flow rates of air, pilot fuel and gaseous fuel. The effects of changing the following parameters have been studied: the mass of pilot fuel, the mass of gaseous fuel, the pilot fuel injection timing, engine speed and the pilot fuel type. Five different pilot fuels has been tested here namely the cottonseed raw oil, the cottonseed methyl ester, the soybean raw oil, the soybean methyl ester and the diesel fuel as a reference fuel.
Technical Paper

Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach

2020-04-14
2020-01-1082
In this paper, a nonlinear semi-active vehicle suspension system using MR fluid dampers is investigated to enhance ride comfort and vehicle stability. Fuzzy logic and fuzzy self-tuning PID control techniques are applied as system controllers to compute desired front and rear damping forces in conjunction with a Signum function method damper controller to assess force track-ability of system controllers. The suggested fuzzy self-tuning PID operates fuzzy system as a PID gains tuner to mitigate the vehicle vibration levels and achieve excellent performance related to ride comfort and vehicle stability. The equations of motion of four-degrees-of-freedom semi-active half-vehicle suspension system incorporating MR dampers are derived and simulated using Matlab/Simulink software.
Journal Article

Application of Nonparametric Magnetorheological Damper Model in Vehicle Semi-active Suspension System

2012-04-16
2012-01-0977
Nonparametric models do not require any assumptions on the underlying input/output relationship of the system being modeled so that they are highly useful for studying and modeling the nonlinear behaviour of Magnetorheological (MR) fluid dampers. However, the application of these models in semi-active suspension is very rare and most theoretical works available on this topic address the application of parametric models (e.g. Modified Bouc-Wen model). In this paper, a nonparametric MR damper model based on the Restoring Force Surface technique is applied in vehicle semi-active suspension system. It consists of a three dimensional interpolation using Chebyshev orthogonal polynomial functions to simulate the MR damper force as a function of the displacement, velocity and input voltage. Also, a damper controller based on a Signum function method is proposed, for the first time, for use in conjunction with the system controller of a semi-active vehicle suspension.
Technical Paper

Injection Characteristics of Rapeseed Methyl Ester versus Diesel Fuel in Pump-Line-Nozzle Injection System

2008-06-23
2008-01-1590
The transformation of rapeseed oil into methyl ester through the transestrification process normally produce biodiesel fuel with kinematic viscosity almost double that of the commercial diesel fuel. The bulk modulus of biodiesel is also higher than that for the conventional diesel fuel. In this paper, the effects of the two physical properties on the injection characteristics of Rapeseed Methyl Ester (RME) are discussed. The injection characteristics considered here were namely; nozzle chamber pressure, needle lift, and fuel injection rate. The mutual effects of engine speed and delivery pipe length were also analyzed. A previously developed computer model was used to simulate the injection process of the conventional pump-line-nozzle injection system. An explicit finite difference scheme was adopted to solve the unsteady flow equation within the delivery pipe.
Technical Paper

Road Humps Design Improvement Using Genetic Algorithms

2009-04-20
2009-01-0466
The number of speed humps (sleeping policemen) has seen a global increase in the last decade. This paper addresses the geometric requirements of these humps using Genetic Algorithms optimization techniques to control the speed, stability, and ride feel of the traversing vehicles. The interaction between road hump profile and the modeled vehicles (passenger and a two-axle truck) are studied with a dynamic model. The shape of the proposed profile is described by numbers of amplitudes of harmonic functions. The extreme acceleration of the drivers’ seats of the vehicles traversing the hump is set as multiobjective function for the optimization process, taking into consideration the road-holding ability represented by the tire lift-off speed. The results show that hump geometry can be improved while fulfilling the requirements of speed control and vehicle dynamic responses.
Technical Paper

Dynamic Modeling of Vehicle Gearbox for Early Detection of Localized Tooth Defect

2008-10-07
2008-01-2630
Dynamic modeling of the gear vibration is a useful tool to study the vibration response of a geared system under various gear parameters and operating conditions. An improved understanding of vibration signal is required for early detection of incipient gear failure to achieve high reliability. However, the aim of this work is to make use of a 6-degree-of-freedom gear dynamic model including localized tooth defect for early detection of gear failure. The model consists of a gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and modifications. The results indicate that the simulated signal shows that as the defect size increases the amplitude of the acceleration signal increases. The crest factor and kurtosis values of the simulated signal increase as the fault increases.
Technical Paper

Effect of Laterally Banked Roadways on the Rollover Threshold of Partially Filled Road Tankers

2003-11-10
2003-01-3387
In this paper, a direct technique to estimate the rollover threshold limits of partially filled tank trucks is applied for banked roadways. Overturning and restoring moments are calculated as functions of tank shape, fill level, gradient of both liquid cargo free surface and the lateral inclination of banked road surfaces. The static rollover threshold of tanker trucks traveling on laterally banked roadways is estimated by balancing the net value of the total overturning moment against the net value of the restoring moment. Different filling ratios are considered for circular, elliptical and modified tank vehicles. The rollover threshold limits are calculated considering a superelevation range of (0.0-0.1) for the lateral road banking as defined by Blue and Kulakowski (1991). It is shown that the vehicle rollover threshold limit increases with an increase of the angle of the lateral road banking.
Technical Paper

Theoretical and Numerical Analysis of Fibrous Composite C-Springs

2001-11-12
2001-01-2710
During the last few decades, fibrous composite materials have been diversified and replaced some traditional metallic materials. These materials provide high strength to weight ratio together with high environmental corrosion resistance. One of the basic engineering applications, which have been attracted by the properties of these composites, is the automotive engineering. In this paper, the authors manipulated the composite C-compression springs as a new trend of vehicle suspension system instead of coil or leaf springs. This type of springs can be safely and efficiently implemented in the vehicles' suspension systems and most probably be used in the new suspension design proposed earlier by one of the authors. Previous work on this context had shown a quality nature and economical technology in the use of composite springs in transportation and/or industrial applications.
Technical Paper

Aerodynamic Effects on Ride Comfort and Road Holding of Actively Suspended Vehicles

2002-07-09
2002-01-2205
This paper is concerned with the analysis of the performance of actively suspended vehicles when the effects of the aerodynamics are considered. The investigation is wholly theoretical and treats a half vehicle model, active suspension, through simulation of running at different speeds on a random-profile road. Using classical control laws, which do not account for aerodynamic effects, it is shown that starting from a vehicle speed of 35 m/s, ride comfort and road holding parameters significantly deteriorate. A method is introduced to modify the control strategy so that these effects can be taken into consideration. Various forms of control laws are presented, and conclusions are drawn to specify the benefits that could be achieved from this modified control strategy.
Technical Paper

On the Analysis of Drum Brake Squeal Using Finite Element Methods Technique

2006-10-31
2006-01-3467
Many basic studies were conducted to discover the main reason for squeal occurrence in both disc and drum brake systems. As, it is well-known that the squealed brake system is more effective than the non-squealed brake system and it is also a common discomfort. So, cancellation of the squeal is not preferable, however, elimination of the brake squeal is a favorable. An approach to study the drum brake squeal is presented based mainly on the Finite Element Method (FEM) representation. The brake system model is based also on the model information extracted from finite element models for individual brake components. This finite element method (FEM) was used to predict the mode shape and natural frequency of the brake system after appropriate verification of FEM.
Technical Paper

A New Empirical Formula for Calculating Vehicles' Frontal Area

2011-04-12
2011-01-0763
The main objective of this research is to find a general empirical formula to predict vehicle frontal area applied to most types of vehicles. This was done on 21 vehicles; passenger cars, buses and trucks by calculating their frontal area by using image processing technique on cars photos extracted from catalogues. The software (Data Fit) is used to establish the required empirical formula. The results showed that the empirical formula is simple and accurate enough for finding out the vehicles frontal areas.
Technical Paper

Modeling of Vehicle Drum Brake for Contact Analysis Using Ansys

2012-09-17
2012-01-1810
A non-contact analysis of a drum brake based on three-dimensional Finite Element analysis using Ansys is presented. The effect of drum-lining interface stiffness and line pressure on the interface contact is examined. The modal analysis of the vehicle drum brake is also studied to get the natural frequency and instability of the drum. It is shown that the unsymmetric modal analysis is efficient enough to solve this linear problem after transforming the non-linear behaviour of the contact between the drum and the lining to a linear behavior. A linear element which is used in the modal analysis is transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining to study the contact analysis. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties.
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Investigation of Different Parameter Based Control Strategies for Active Independent Front Steering (AIFS) System

2021-04-06
2021-01-0967
The previous research work on Active Independent Front Steering (AIFS) system concluded an enhanced vehicle response and tire adhesion utilization. Some research emphasizes the importance of Tire Work load (TWL) in the generation of maximum possible tire forces that ensures vehicle controllability and stability. In this study, a mathematical model is constructed to investigate the effect of TWL as a parameter on AIFS performance. Toward such a target, a new Fuzzy control strategy is developed based on TWL and vehicle yaw rate as control inputs for the AIFS controller. Unfortunately, the TWL is not a measurable parameter or even easy to be estimated. Consequently, another control strategy was implemented based on slip angle and vehicle yaw rate as inputs for the AIFS controller.
Technical Paper

Controller Design for Path Tracking of Autonomous Vehicle Incorporating Four-Wheel Steering System

2022-03-29
2022-01-0299
This research aims to model and assess autonomous vehicle controller while including a four-wheel steering and longitudinal speed control. Such a modeling process simulates human driver behavior with consideration of real vehicle dynamics’ characteristics during standard maneuvers. However, a four-wheel steering control improves vehicle stability and maneuverability as well. A three-degree of freedom bicycle model, lateral deviation, yaw angle, and longitudinal speed is constructed to describe vehicle dynamics’ behavior. Moreover, a comprehensive traction model is implemented which includes an engine, automatic transmission, and non-linear magic formula tire model for simulation of vehicle longitudinal dynamics. A combination of proportional integral derivative (PID) longitudinal controller and fuzzy lateral controller are implemented simultaneously to track the desired vehicle path while minimizing lateral deviation and yaw angle errors.
Technical Paper

Enhancement of Semi-active Vehicle Suspension System Performance Using Magnetorheological Damper

2022-03-11
2022-01-5018
Vehicle suspension is considered a vital system of modern automotive and necessary to offer an adequate level of ride comfort and roadholding. In the present paper, a fuzzy-based sliding surface (FBSS) controller is designed, as a system controller for the first time, for a semi-active vehicle suspension using a magnetorheological (MR) damper in order to minimize the transmitted unwanted vibrations to the passengers. Therefore, an ideal reference skyhook model is employed to construct the sliding surface, which is the input of fuzzy logic. MR damper is a semi-active device and is controlled indirectly using an external voltage source. So a neural-based damper controller is used to compute the applied voltage to the magnet coil of the MR damper in series with the FBSS system controller. The proposed semi-active controlled quarter-vehicle suspension using an MR damper is solved numerically by Matlab.
Technical Paper

Hybrid Shape Optimization and Failure Analysis of Laminated Fibrous Composite E-Springs for Vehicle Suspension

2006-10-31
2006-01-3586
A hybrid search optimization is presented in order to optimize hybrid laminated fibrous composite E-springs for vehicle suspension systems. This optimization is conducted with both of the geometrical configuration and laminate structure of the E-spring. A genetic algorithm along with a hill-climbing random-walk approach are used through a developed NURBS-based technique in order to conduct this optimization. A mathematical-modeling-based mid-ware technology is introduced in order to fully automate the optimization process through linking the run engines of mathematical modeling and finite element analysis from within the mathematical modeling engine. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is first implemented in order to identify failure indices of the resulting optimum shape and laminate structure.
X