Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Camera-Based Driver State Monitoring System for Cost-Effective Embedded Solution

2020-04-14
2020-01-1210
To prevent the severe consequences of unsafe driving behaviors, it is crucial to monitor and analyze the state of the driver. Developing an effective driver state monitoring (DSM) systems is particularly challenging due to limited computation capabilities of embedded systems in automobiles and the need for finishing processing in real-time. However, most of the existing research work was conducted in a lab environment with expensive equipment while lacking in-car benchmarking and validation. In this paper, a DSM system that estimates driver's alertness and drowsiness level as well as performs emotion detection built with a cost-effective embedded system is presented. The proposed system consists of a mono camera that captures driver's facial image in real-time and a machine learning based detection algorithm that detects facial landmark points and use that information to infer driver's state.
Journal Article

Automatic Curve Deceleration System Using Enhanced ACC with Navigation System

2008-04-14
2008-01-0922
We have developed a system for automatic deceleration upon entering curves to prevent collisions on tight curves on high-ways. The navigation system is used to determine safe speed negotiating the curve, defined as a speed that will keep lateral acceleration within a settled value. The navigation system sends the curve radius to a controller, which calculates the safe speed for the curve. The controller then sends the speed command to the ACC system, which adjusts the vehicle speed. One of the important features in this system is the estimation of the vehicle position, in terms of its distance from the curve entrance. Navigation systems have a certain amount of dispersion in positional accuracy. A front camera is used in our system to decrease this dispersion. This camera detects lane markers (white lines, raised pavement markers, etc.) using our line recognition technologies1).
Technical Paper

Drive Horizon: An Artificial Intelligent Approach to Predict Vehicle Speed for Realizing Predictive Powertrain Control

2020-04-14
2020-01-0732
Demand for predictive powertrain control is rapidly increasing with the recent advancement of Advanced Driving Assistance Systems (ADAS) and Autonomous Driving (AD). The full or semi-autonomous functions could be leveraged to realize better user acceptance as well as powertrain efficiency of the connected vehicle utilizing the proposed Drive Horizon. The sensors of automated driving provide perception of surrounding driving environment which is required to safely navigate the vehicle in real-world driving scenarios. The proposed Drive Horizon provides real-time forecast of driving environment that a vehicle will encounter during its entire travel. This paper summarizes the vehicle’s future speed prediction technique which is an integral part of Drive Horizon for optimized energy control of the vehicle. The prediction model has been developed that integrates information from multiple sources including vehicle GPS, traffic information and map data.
Journal Article

Membership Middleware for Dependable and Cost-Effective X-by-Wire Systems

2008-04-14
2008-01-0478
Balancing between dependability and cost-effectiveness is essential to promote X-by-Wire systems in the next decade. To achieve this goal, we have so far proposed a network centric architecture based on a concept of autonomous decentralized systems, where if one node fails, the remaining normal nodes autonomously execute a backup control to maintain the system's functionality, as well as a membership middleware indispensable to this architecture to ensure the consistency of the node status information among all nodes. In this work, we implemented membership middleware on a hardware and software platform equivalent to one assumed to be used in actual X-by-Wire systems. This paper describes the implementation details and performance evaluation result, and shows that membership middleware and a real-time critical application can coexist within one microcontroller.
Technical Paper

Research on Subjective Rating Prediction Method for Ride Comfort with Learning

2020-09-30
2020-01-1566
Suspension is an important chassis part which is vital to ride comfort [1]. However, it is difficult to achieve our targeted comfortability level in a short time. Therefore, improving efficiency of damper development is our primary challenge. We have launched a project which aims to reduce the workload on developing dampers by introducing analytical approaches to the improvement of ride comfort. To be more specific, we have been putting effort into developing the damping force prediction, the vehicle dynamics prediction and subjective rating prediction. This paper describes subjective rating prediction method which output a subjective rating corresponding to the physical value of the vehicle dynamics with deep learning. As a result of verification using objective data which was not used for learning process, DNN (Deep Neural Network) prediction method could fairly precisely predict subjective rating of the expert driver.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Technical Paper

Computer-Aided Calibration Methodology for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Analysis

2007-10-29
2007-01-4023
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data.
Technical Paper

Development of a Three-Dimensional Bird's-eye View Map Drawing Technique for Car Navigation Systems

1998-02-23
980605
In this paper, a newly developed three-dimensional (3D) bird's-eye view map drawing technique for car navigation systems is described. Conventional navigation systems give pseudo-perspective views which can not express ruggedness like hills and valleys. Our newly developed navigation system can display undulation of the land from viewpoints above and behind the current position, so that ups and downs of roads along with the driver's destination can be seen easily. The 3D-road map is not only effective during navigation but also during route planning, because it assists in searching for fine views before travel. In order to achieve the 3D-map view, we developed graphics software libraries, which work on a 32-bit RISC processor and on a low-cost graphics accelerator LSI with texture mapping capability. The graphics software libraries are constructed with three stages, the perspective projection stage, visible-surface determination stage, and rendering stage.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

1990-09-01
901712
Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

Optical Fiber Gyroscopes for Automobiles

1990-02-01
900490
This paper reviews the technological aspects and characteristics of optical fiber gyroscopes, and discusses their automotive applications. The optical system of an all-fiber gyroscope and the fiber optic components to build it are described. An optical phase modulation scheme to improve the sensitivity and the signal processing for the modulated output are discussed. The specifications of some packaged optical fiber gyroscopes are explained. An earth's rotation detection experiment is demonstrated to show the higher performance. The potential automotive related applications of the gyroscope are forecasted. One of the off-board uses of the sensor is the vibration measurements of a vehicle. When used onboard, the optical fiber gyroscopes will improve the navigation accuracy. A navigation result utilized the sensor with a map matching algorithm is reported. The gyroscopes may also be applied to future chassis controls.
Technical Paper

The Effect of Methanol-Gasoline Mixing Ratio on Performance of Internal Combustion Engines

1990-02-01
900584
Engine performance has been investigated of currently gasoline powered passenger car engines converted to methanol and gasoline mixtures. A 4 cycle, 4 cylinder, 1.6 liter displacement engine for a conventional passenger car was tested varying the fueling condition. The mixing ratio of methanol to gasoline was changed from zero percent to one hundred percent, discreetly. Evaluation of engine performance was made to find the optimum air-fuel ratio and spark timing in each mixed fuel condition. It has been clarified that the stoichiometric air-fuel ratio in the mixed fuel can be determined by the mixing ratio P, as an expression of The MBT(minimum spark advance for the best torque) characteristics for each mixed fuel codition show that the large retardation of spark timing will be required for the higher mixture ratio fuels. Changes in characteristics of fuel supply and air-fuel ratio sensing devices were investigated experimentally.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

2007-04-16
2007-01-0776
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

Numerical Analysis for the Small Positive Pressure Control System of CEEF

1997-07-01
972516
It is necessary to develop a small positive pressure control system for the closed ecology experiment facility (CEEF) to protect against over-differential pressure loading. In the present study, a numerical method was developed to calculate the quantity of state of the closed module, which is fitted with rubber buffers, for the small positive pressure control system. Experiments to examine the pressure change of the closed module were carried out at CEEF. Comparison of calculated and experimental results showed that the present dynamic simulation is suited to estimating the quantity of state of the closed module.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Development of a Hydrogen Flow Sensor

2001-03-05
2001-01-0613
A new hydrogen flow sensor was designed and evaluated based on the concept of hot wire anemometry. This sensor is designed to measure the mass flow rate of hydrogen gas used in (but not limited to) proton exchange fuel cell, PEFC. The conceptual evaluation was initiated by deriving an electro-thermal model of the hot wire required for sensing hydrogen velocity. The modeling is done via a mechatronics software tool, Saber™. This model was validated using air as a medium. Simulated and experimental performance results and safety issues are presented and discussed in this paper. Fail safe methods and effectiveness have been investigated along with hydrogen ignition temperatures with varying hydrogen to air ratio.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Technical Paper

Development of an On-Board Class A Local Area Network System

1992-02-01
920229
The growing number of electronic components used in automobiles lately has given rise to problems concerning the increasing number, size and weight of the wiring harnesses. As one approach to resolving these problems, the authors proposed a multiplex method based on the direction of signal flow in 1988 (SAE880589). However, the need to reduce the number of wiring harnesses circuits further made it necessary to develop a more sophisticated system. This paper presents an on-board Class A local area network (LAN) system that overcomes the problems in conventional multiplexing systems through the use of a master-slave configuration, a polling selection method and a system that integrates of electronic circuits with switch modules.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
X