Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of Methanol-Gasoline Mixing Ratio on Performance of Internal Combustion Engines

1990-02-01
900584
Engine performance has been investigated of currently gasoline powered passenger car engines converted to methanol and gasoline mixtures. A 4 cycle, 4 cylinder, 1.6 liter displacement engine for a conventional passenger car was tested varying the fueling condition. The mixing ratio of methanol to gasoline was changed from zero percent to one hundred percent, discreetly. Evaluation of engine performance was made to find the optimum air-fuel ratio and spark timing in each mixed fuel condition. It has been clarified that the stoichiometric air-fuel ratio in the mixed fuel can be determined by the mixing ratio P, as an expression of The MBT(minimum spark advance for the best torque) characteristics for each mixed fuel codition show that the large retardation of spark timing will be required for the higher mixture ratio fuels. Changes in characteristics of fuel supply and air-fuel ratio sensing devices were investigated experimentally.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Development of a Hydrogen Flow Sensor

2001-03-05
2001-01-0613
A new hydrogen flow sensor was designed and evaluated based on the concept of hot wire anemometry. This sensor is designed to measure the mass flow rate of hydrogen gas used in (but not limited to) proton exchange fuel cell, PEFC. The conceptual evaluation was initiated by deriving an electro-thermal model of the hot wire required for sensing hydrogen velocity. The modeling is done via a mechatronics software tool, Saber™. This model was validated using air as a medium. Simulated and experimental performance results and safety issues are presented and discussed in this paper. Fail safe methods and effectiveness have been investigated along with hydrogen ignition temperatures with varying hydrogen to air ratio.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

Improved Thermal Efficiency Using Hydrous Ethanol Reforming in SI Engines

2013-09-08
2013-24-0118
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine.
Technical Paper

Development of a High Pressure Gas Flow Sensing Device

1995-02-01
950530
The usage of Compressed Natural Gas (CNG) engines is increasing as requirements for cleaner emissions are required by state and federal agencies such as C.A.R.B. and E.P.A. Also, to further reduce emission levels, tighter air/fuel ratio control is required. There are many ways to control air/fuel ratio on a CNG engine. It can be performed in a feedforward method, a feedback method or a combination of both. CNG fuel can be introduced to the engine via single-point injection, multi-point injection or with an air/gas mixer. Mixer-type and single-point injection are good candidates for the application of a gas flow sensor for accurate air/fuel ratio measurement. Reduction of valve hysteresis can also be achieved. Fuel delivery and control systems cost can be kept low compared to using multi-point injection where high flow injectors are required for each cylinder. A gas flow sensor is placed in the CNG stream to monitor mass gas flow rate.
X