Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A High Energy Ignition System for EGR Combustion Engine

2017-03-28
2017-01-0675
Low pressure cooled exhaust gas recirculation (EGR) to suppress engine knocking is increasingly being used to downsize engines and increase the compression ratio to improve thermal efficiency. This study aims to develop an ignition system to extend the EGR limit and EGR operation area. The ignition system must be improved to enhance ignitability of a mixture of fuel and air. In this paper, we focus on ignition energy of the ignition coil and summarize experimental results on a test dyno obtained by using reinforced conventional ignition coil on the basis of ignition energy and engine speed. As engine speed (mixture flow velocity between ignition plug electrode-gap) and EGR ratio were increased, the secondary energy requirement of the ignition coil was increased. This increase was considered to be caused by an increase of mixture flow velocity at the plug gap and a decrease of laminar flame velocity as EGR ratio increased.
Technical Paper

Investigation of a Detecting Technology of Combustion Conditions Using the Ion-Current Sensor

2015-09-01
2015-01-1983
In previous study, a method of combustion detection for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated [1]. In addition, an ion-current sensor has been used as a countermeasure against abnormal combustion with downsizing and higher compression ratio engines. An ion-current sensor has been newly adopted in engine systems. In this study, detection performance of combustion conditions in HCCI and spark ignition (SI) using with the ion-current sensor was estimated. The purpose of this study was to confirm detectable combustion conditions using with the ion-current sensor, and to confirm a requirement of applied voltage for the ion-current sensor. A detection signal of the ion-current sensor was changed by combustion style (HCCI,SI). Experimental results showed a heat release rate increased with ion signals increasing approximately at the same time in HCCI and SI.
Technical Paper

Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine- An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor -

2014-04-01
2014-01-1279
The robustness control for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated. On the other hand, an ion current sensor is used as a countermeasure against abnormal combustion with downsized and higher compression ratio engines. This sensor can generally be adopted in engine systems. Therefore, we examined the application of an ion current sensor to robustness control for HCCI. The purpose of this research was to develop a method of detecting combustion conditions to make HCCI engines more robust. Therefore, we evaluated the performance of the ion current sensor. Experimental results comparing ion intensity detection in HCCI. The detection value of the ion current sensor changed based on the form of combustion. Experimental results showed that the heat release rate increased with an increase in ion signals appear during the same time at approximately in both spark ignition (SI) and HCCI.
X