Refine Your Search

Topic

Author

Search Results

Technical Paper

Runtime Active Safety Risk-Assessment of Highly Autonomous Vehicles for Safe Nominal Behavior

2020-04-14
2020-01-0107
Fatal crashes involving automated driving systems, has been raising the concern of minimum standard requirement for safety, reliability and performance required for Autonomous Driving System (ADS)/Advanced Driver Assistance System (ADAS) before this cutting-edge technology takes on public roads. Hence, in order to ensure necessary safety requirements of ADS/ADAS systems we propose a runtime active safety assurance module known as SConSert. SConSert performs dynamic risk assessment of “Sensing, Planning and Action module of ADS/ADAS”; to provide minimal risk maneuver in any given driving scenario. The dynamic risk assessment of ADS/ADAS system is based on the operational design domain (ODD) knowledge of the driving scenario plus the sensor capability, ADS/ADAS algorithm requirement and capability, and finally smooth and collision free maneuver requirement.
Technical Paper

Physiological Monitoring of Crew During Repeated 7-Day Habitation in an Advanced Life Support System

2007-07-09
2007-01-3230
Human activities in space must include life in a confined, artificial and isolated environment. We investigated the mental and physiological status of four crewmembers undergoing repeated seven-day habitation in an advanced life support system. In order to monitor the psycho-physiological stresses, saliva cortisol and urinary adrenaline were sampled and visual-analog scale was serially recorded. As a result, saliva cortisol and urinary adrenaline levels were higher in pre- and post habitation. Psychological scales showed a relatively relaxed mood during habitation, indicating that the crew experienced stress in the pre- and post seven-day habitation periods. The periods of environmental change such as those pre-and post habitation seem to be critical for monitoring the health of crew performing analogous missions.
Technical Paper

The Influence of Repeated Closed Habitation Experiments on Crews Health

2007-07-09
2007-01-3229
Two-week closed habitation experiments were repeated three times using Closed Ecology Experiment Facilities (CEEF) to evaluate the capability of advanced life support systems. The CEEF is a two-manned system. Four crew members, termed econauts, inhabited the CEEF, taking turns at one-week shifts in pairs. Each econaut underwent three habitations. In order to evaluate the state of health of the crew, medical examinations were carried out before, immediately after and two months after the series of habitations. Physical data such as blood pressure, body temperature and body weight were monitored during each habitation. In 2005, though calorie intake and expenditure were well balanced, a temporary reduction in body weight was observed. As a countermeasure in 2006, econauts began their habitation diet one week before habitation to adapt their condition. As a result, total serum cholesterol significantly decreased after the series of habitations.
Technical Paper

Outreach Activities of the Closed Ecology Experiment Facilities (CEEF)

2007-07-09
2007-01-3068
The CEEF (Closed Ecology Experiment Facilities) was constructed for collecting data on carbon transfer from the atmosphere to crops, livestock and humans by conducting material circulation experiments, including the habitation of humans and animals and growing crops which supply food and feed, within a closed environment. The main objective of the CEEF project involves understanding the transfer of radiocarbon in the environment via experiments using stable carbon isotopes. On the other hand, the project is also a good example demonstrating human life in ecosystem material circulation. Many people visited and toured the CEEF and the project has been introduced by the media. The candidate inhabitants, who were selected for the project following medical and psychological testing, are called “eco-nauts”. The CEEF project was introduced and eco-nauts participated in events with the intention of educating the public on the human impacts on an ecosystem made by a science museum.
Technical Paper

Circulation of Water in Addition to CO2, O2 and Plant Biomass in an Artificial Ecosystem Comprised of Humans, Goats and Crops During Three 2-Weeks Closed Habitation Experiments Using CEEF

2007-07-09
2007-01-3091
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for realistic estimation of radiocarbon transfer in the ecosystem. Two-week experiments were conducted three times from September to November of 2006, in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility, the CEEF. The eco-nauts were changed after a week from beginning of each experiment. In these experiments, a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, was connected to an Animal & Habitation Module (AHM) which included the eco-nauts and two goats. 91.8-94.6% (by weight) of the food consumed by the eco-nauts and 79% of the feed to the goats (straw, leaf and bran of rice, leaf and stem of soybean, and leaf, stem and shell of peanut) were produced from crops in the PM. Amount of oxygen produced by the crops was more than the amount consumed by respiration of human and animals in these experiments.
Technical Paper

The Initial Tests for Performance Evaluation of Closed Plant Experiment Facility (CPEF) of Closed Ecology Experiment Facilities (CEEF)

1997-07-01
972517
The Closed Ecology Experiment Facilities (CEEF) have been under construction in northern Japan since 1994. These facilities contain the Closed Plant Experiment Facility (CPEF), as well as other facilities, in all of which, Controlled Ecological Life Support Systems (CELSS) research and development can be conducted. The CPEF includes two Plant Cultivation Modules (PCMs), which contain a PCM consists of three 30m2 closed cultivation rooms illuminated solely by lamps and a 165.1m3 preparation room, and a PCM consists of a 60m2 closed cultivation room illuminated by natural light and supplemental lamps and a 88.8m3 preparation room, and a Material Circulation System (MCS). Measured rate of air exchange between a 30m2 cultivation room and the preparation room was 0.48% hour-1, and that for a 60m2 cultivation room was about 0.11% hour-1. Air leak rate of the PCM as a whole was less than 0.01% hour-1 under isothermal and equal pressure condition.
Technical Paper

Research and Development of Operation Technology on the Waste Processing System of the Closed Ecology Experiment Facilities for Circulation of Carbon in an Experimental Closed Ecosystem Comprised of Humans, Goats and Crops

2008-06-29
2008-01-1979
Before a series of overall material circulation in an experimental system including crops, animals and humans, technical examinations for the development of a waste processing system were conducted for incorporating the system to the Closed Ecology Experiment Facilities (CEEF). The examinations are intended to validate the function of the carbonization and incineration processing units which were installed in the CEEF in 2006. Using different mock-up samples, examinations have been carried out to verify the function and capability of the whole system, including the waste carbonization processing unit, incineration processing unit, exhaust gas tank and the exhaust gas processing unit. In an examination using filter paper pulp as a mock-up sample, processing time in each unit was checked. The processing times needed for carbonization and incineration processing were 5.7 and 2.6 hours, respectively.
Technical Paper

Stability Improvement of Direct Fuel Injection Engine under Lean Combustion Operation

1998-10-19
982703
Meeting future exhaust emission and fuel consumption standards for passenger cars will require refinements in how the combustion process is carried out in spark ignition engines. A direct injection system reduces fuel consumption under road load cruising conditions, and stratified charge of the air-fuel mixture is particularly effective for lean combustion. This paper describes an approach to improve combustion stability for direct fuel injection gasoline engines. Effects of spray characteristics (spray pattern and diameter) and air flow motion on the combustion stability were investigated. Spray patterns were observed by the laser sheet scattering method and 3-dimensional laser doppler velocimetry. Mixture behavior in the combustion chamber was observed by the laser-induced fluorescence method using an excimer laser and single cylinder optical engine. It was found that the spray pattern for a pressurized condition affects the combustion stability and smoke generation.
Technical Paper

Outline of Material Circulation — Closed Habitation Experiments Conducted in 2005 – 2007 Using Closed Ecology Experiment Facilities

2009-07-12
2009-01-2580
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for estimation of transfer of radionuclides from atmosphere to humans in the ecosystem. The first target among the radio-nuclides is 14C. In order to validate function of material circulation in an experimental system constructed in the CEEF, circulation of air constituents, water and materials in waste was demonstrated connecting the Closed Plant Experiment Facility (CPEF) and the Closed Animal and Human habitation Experiment Facility (CAHEF) of the CEEF, since 2005 to 2007. The CPEF has a Plant Cultivation Module (PCM), which comprises of three plant chambers illuminated solely by artificial lighting, one plant chamber illuminated by both natural and artificial lighting, a space for preparation, and an airlock, and a physical/chemical material circulation system.
Technical Paper

A New Feedback Control of a Lean Nox Trap Catalyst

2004-03-08
2004-01-0527
A new feedback control for an LNT has been developed. This control adapts the rich spike (regeneration) operation in accordance with conditions of the engine and the LNT to realize high precision and robustness. The control consists of three components. First is a reference model composed of an inlet Nox concentration model and an LNT model. Second is a controller for rich spike timing and its duration. The start timing of the rich spike and its duration are determined based on the reference model. Third is a self tuning function. It adapts the parameters of the reference model using an Nox sensor downstream from the LNT. In particular, it can distinguish between deterioration of the LNT and unexpected change (increase or decrease) of Nox concentration in inlet gas in lean operation. To evaluate the performance of the proposed control, two other types of controls (type 1 and type 2) are discussed. Type 1 is a control based on the reference model without a sensor.
Technical Paper

Development of a High Performance Catalyzed Hydrocarbon Trap Using Ag-Zeolite

2004-03-08
2004-01-1275
A high performance catalyzed hydrocarbon (HC) trap, consisting of a Ag-impregnated zeolite and a three-way catalyst (TWC), was developed to achieve the stringent exhaust regulations such as SULEV. To improve the HC retention ability and durability of Ag-zeolite, the effects of wash-coat loading, HCs species, space velocities (SV) etc. on HC desorption profiles upon heating-up were examined in detail. In the present study, a simulated durability test using a cyclic lean-stoichiometric aging, was developed and applied for durability evaluation. An ultraviolet visible near-infrared spectrophotometer (UV-Vis) showed that specific chemical species of Ag were responsible for the delay of HC desorption. After the cyclic aging, the retention effect of Ag was only seen with aromatic compounds. It was revealed that the HC retention effect on aromatic compounds was maintained at high SV values, which was confirmed by actual vehicle tests.
Technical Paper

Matching of Gas Metabolism among Crop Community, Human and Animal in the CEEF

2003-07-07
2003-01-2452
Rating of daily amounts of CO2 and O2 exchange of crops, animals and humans to be involved in the long-term habitation experiments using the Closed Ecology Experiment Facilities (CEEF) were carried out. Daily amounts of the CO2-absorption and O2-generation of crops including rice, soybeans and other 27 vegetables were estimated from data obtained from a sequential crop cultivation experiment conducted from August to December of FY2001. Daily amounts of O2-consumption and CO2-expiration of two female Shiba goats to be involved were estimated based on gas exchange determination conducted in FY2002. Daily amounts of CO2-expiration and O2-consumption of two persons to be involved were estimated based on correlation between respiration rate and heart rate, heart rate data during the simulated habitation in the CEEF and a tentative work schedule.
Technical Paper

Considerations of Material Circulation in CEEF Based on the Recent Operation Strategy

2003-07-07
2003-01-2453
In the Closed Ecology Experiment Facilities (CEEF), with integrating the Closed Plantation Experiment Facilities (CPEF) and the Closed Animal Breading & Habitation Facilities (CABHF), closed habitation experiments without material exchange with the outside will be conducted after the 2005 fiscal year. Cultivation experiments of about 30 crops and the integrating test of the material circulation system required for the closed habitation experiments have been performed since 2000 fiscal year. Using data reported in these experiments, material circulation in CEEF is simulated based on the recent operation strategy, and the storage capacity needed for the buffer of an air processing subsystem was estimated. In order for two humans to dwell over 120 days, the storage capacities of the carbon dioxide tank, the oxygen tank, and the waste gas tank in CPEF, and the carbon dioxide tank and the oxygen tank in CABHF are 820 g, 2830 g, 4425 g, 1780 g, and 1792 g, respectively.
Technical Paper

Simulation to Support an Integration Test Project of CEEF

2001-07-09
2001-01-2130
A simulation of an open mode system experiment was run using the same experimental conditions as an integration test conducted from September 1999 to February 2000 using the Closed Plant Experiment Facility at the Institute for Environmental Sciences in order to evaluate the operation of closed mode system to be conducted in future. Operation of the open mode system experiment required a supply of water and carbon dioxide from the outside, and the discharge of nutrient waste water and oxygen. The present simulation verified the feasibility of using non-integrated wet-oxidation processor, nutrient synthesis unit and nutrient waste water processor connected within a closed mode system, and it was confirmed that sufficient material circulation could be achieved when rice and soybeans were divided into six beds with different growing stages to facilitate control of the nutrient solution.
Technical Paper

Integration of Sequential Cultivation of Main Crops and Gas and Water Processing Subsystems Using Closed Ecology Experiment Facilities

2001-07-09
2001-01-2133
The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation. Two experiments were conducted from September 27, 1999 to February 17, 2000 and from September 28, 2000 to February 9, 2001 in this study. In both experiments, rice and soybeans were cultivated sequentially in each chamber, having a cultivation bed area of 30 m2 and floor area of 43 m2, inside the Plantation Module (PM) with artificial lighting of the CEEF. 6 to 8 other vegetables were also cultivated in a chamber, having a cultivation bed area of 60 m2 and floor area of 65 m2, inside the PM with natural lighting in the first experiment and the second experiment. In both experiments, stable transplant and harvest of each crop were maintained during approximately one month, after approximately 3-months preparatory cultivation.
Technical Paper

Analysis of Photosynthesis and Biomass Allocation for Simulation of Edible and Inedible Biomass Production and Gas Exchange of Main Crops within Ceef

2002-07-15
2002-01-2484
The plant system plays roles of edible biomass production, O2 production, CO2 removal, and so on, in bioregenerative life support systems. In order to simulate the edible and inedible biomass production and gas exchange of crops, it is necessary to construct reliable dynamic prediction models for each crop considering not only short-term environmental effects but also its long-term effects, because response of plant system is highly dependent on plant age, plant size, and environmental condition experienced by the plant. Closed Plantation Experiment Facility (CPEF) of Closed Ecology Experiment Facilities (CEEF) has three plantation chambers with artificial lighting system, which has maximum capability for providing PPFD of approximately 1900 μmol·m-2·s-1 for crops at canopy top level in these chambers. Each even-aged population of rice and soybean was grown in each plantation chamber.
Technical Paper

Rapid and Accurate Determination of Bacterial Abundance and their Physiological Activity in Freshwater used in Closed Ecology Experiment Facilities (CEEF) “Mini-Earth”, Japan

2006-07-17
2006-01-2078
In space utilization, an enormous amount of freshwater for drinking, daily use, hydroponics. is used and recycled in a closed habitat. We have developed culture-independent techniques to analyze microbial cells at the single level, a cell itself, and also community level. By using these methods such as fluorescent vital staining (double staining with carboxyfluorescein diacetate and 4′,6-diamidino-2-phenyl indole), microcolony method and denaturing gradient gel electrophoresis (DGGE), bacterial abundance and their physiological activity in freshwater used in Closed Ecology Experiment Facilities (CEEF) “Mini-Earth” were determined.
Technical Paper

Carbon Flow in an Artificial Ecosystem Comprised of Crew, Goats and Crops for Three 1-Week Confined Habitation Experiments Using CEEF

2006-07-17
2006-01-2075
Three 1-week experiments were conducted from September to October of 2005 in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility called Closed Ecosystem Experiment Facilities (CEEF). The test involved connecting a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, to an Animal & Habitation Module (AHM), which included the eco-nauts and two Shiba goats. Although only 34% (by weight) of the food consumed by the eco-nauts was produced by crops in the PM in the first experiment, it was 81% in the second and third experiments. As for feed for the goats, although all was Timothy hay was supplied from outside in the first experiment, all of the feed (rice straw, soybean leaf and peanut shell) was produced in the PM in the second and third experiments. In all these experiments, the crops produced more oxygen than the amount consumed by respiration of human and animals.
Technical Paper

Carbon Dioxide Separation and Recovery from the Closed Animal Breeding and Habitation Module of the CEEF during Closed Habitation Experiments

2006-07-17
2006-01-2076
In the Closed Ecology Experiment Facilities (CEEF), an artificial ecosystem including crops, Shiba goats, and human inhabitants is to be constructed in order to conduct long-term habitation experiments. For carbon circulation in this artificial ecosystem, CO2 needs to be recovered from the air of animal breeding and habitation rooms using a CO2 separator and to be injected into growth chambers for consumption in crop photosynthesis. Moreover, daily crop yield from the growth chambers needs to be stabilized to drive carbon circulation in the artificial ecosystemwithout huge buffers. Because crops are cultivated in a staggered manner, controlling atmospheric CO2 concentration in the growth chambers at a constant level during light periods throughout crop cultivation is necessary for stabilizing daily crop yield.
Technical Paper

Air Circulation Confinement Experiments in the CEEF: Physiological Status in Econauts through Repeated Seven-day Habitations

2006-07-17
2006-01-2294
Closed Ecology Experimental Facilities, CEEF, is designed to regenerate everything required for living, such as air, water, and food. Researchers called “econauts” play a crucial role in maintaining the system in good order. CEEF must involve confinement, which is one of the major factors responsible for deterioration in crew health and performance. Two econauts repeated 7-day habitation in the CEEF 3 times in 2005. Blood cells, hormones and mood status were analyzed. Although clinically no problem, changes of mood status and a stress hormone correlated in an econaut. Characteristic changes were observed in leukocyte ratio. These data are essential in considering the effects of forthcoming long-term habitation in CEEF.
X