Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Technical Paper

Development and Validation of a Mean Value Engine Model for Integrated Engine and Control System Simulation

2007-04-16
2007-01-1304
This paper describes the development of a mean value model for a turbocharged diesel engine. The objective is to develop a fast-running engine model with sufficient accuracy over a wide range of operating conditions for efficient evaluation of control algorithms and control strategies. The mean value engine model was derived from a detailed 1D engine model, using the Design of Experiments (DOE) and hybrid Radial Basis Functions (RBF) to approximate the simulation results of the detailed model for cylinder quantities (e.g., the engine volumetric efficiency, the indicated efficiency, and the energy fraction of the exhaust gas). Furthermore, the intake and exhaust systems (especially intake and exhaust manifolds) were completely simplified by lumping flow components together. In addition, to compare with hybrid RBF, neural networks were also used to approximate the simulation results of the detailed engine model.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Integrated Simulation of the Engine and Control System of a Turbocharged Diesel Engine

2006-04-03
2006-01-0439
Over the last decade significant efforts have been made in the automotive industry to move into a math-based control development approach where much of the development could be done off-line using computer simulations. High-fidelity simulation of an engine and control system helps to shorten controller development time with reduced risk. This requires the integration of a detailed engine model with a representative controller model. This paper describes the development and validation of an integrated engine and controller model of a turbocharged diesel engine. The integrated model incorporates a detailed engine model in GT-Power and a comprehensive controller model in Simulink with functionalities like the production ECM. The focus of this study is a non-real time simulation and analysis of the control of EGR, turbocharger, and fueling with engine performance.
Technical Paper

Development and Experimental Study of a New Diesel Exhaust Particulate Trap System*

2000-10-16
2000-01-2846
Diesel exhaust particulate trap system is one of the most effective means to control diesel particulate emissions from diesel vehicles. In this paper, a recently developed diesel exhaust particulate trap system was described and experimentally studied. This system employed a wall-flow ceramic foam filter, which was made of silicon carbide or chromium oxide. And this system was equipped with a microwave heater for the purpose of filter regeneration. Engine dynamometer testing, vehicle bench testing and on-road evaluation of this system were conducted. The experiments studied on the filtration efficiency of this system, the effectiveness of filter regeneration, the power penalty of the vehicle, the ability of noise suppression of this system, and the durability of this particulate trap system. The experimental results showed that this diesel particulate trap system was effective, reliable, and durable.
Technical Paper

Radio-Frequency (RF) Technology for Filter Microwave Regeneration System*

2000-10-16
2000-01-2845
A new diesel exhaust particulate trap system was developed to control diesel particulate emissions from buses in large cities in China. This system was equipped with a microwave heater for the purpose of filter regeneration. To achieve effective and efficient filter regeneration, a radio-frequency (RF) technology was employed. The RF technology measured the amount of particulate trapped in filter, and it controlled filter regeneration using microwave signal. In this paper, the on-line diesel particulate measurement system was described, and experimental study of this measurement system was reported. The experimental results proved the effectiveness of the RF technology in the application of this diesel particulate trap system.
X