Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Development of the Next-generation Steering System (Development of the Twin Lever Steering System)

2010-04-12
2010-01-0993
With the objective of establishing the ultimate steering operation system for drivers, we developed, based on bioengineering considerations, the Twin Lever Steering (TLS) system which mimicks the bi-articular muscles, as shown in Fig. 1 . The bioengineering advantages are as follows: (1) force can be exerted more easily, (2) the steering can be accomplished quickly, (3) the positioning can be done accurately, and (4) the burden on the driver can be reduced (less fatigue). The advantages of the vehicle in terms of its motion are as follows: (1) the line-traceability is improved, (2) the drift control is improved, (3) the lane-change capability is improved, and (4) the lap time and stability are improved. We would like to report on these advantages of the TLS system from a bioengineering standpoint, and also describe the results of some verification test results obtained from vehicles equipped with this new steering system.
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Study on Analysis of Input Loads to Motorcycle Frames in Rough Road Running

2014-11-11
2014-32-0021
In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom.
Journal Article

Development of Improved Method for Magnetically Formed Decorative Painting

2014-11-11
2014-32-0045
Currently, there is a growing demand for application of plastic coverings for motorcycles in the market. Accordingly, decorative features for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, the magnetically formed decorative painting had been adopted to a mass-production model sold in Thailand in 2008. Magnetically formed decorative painting is a method in which the design patterns are formed by painting a material that contains flakes movable along with magnetic fields, while applying magnetic sheets in the ornamenting design shapes underneath the part being painted. It offers a three-dimensional appearance even though its surface has no protrusions or indentations. The degree of three-dimensionality on the paint surface appearance was defined as “plasticity” [1] (a term used in pictorial arts).
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Journal Article

Development of an Electric-based Power Steering System

2015-04-14
2015-01-1567
In this research, a three degree-of-freedom (DOF) rack-type electric-based power steering (EPS) model is developed. The model is coupled with a three DOF vehicle model and includes EPS maps as well as non-linear attributes such as vibration and friction characteristics of the steering system. The model is simulated using Matlab's Simulink. The vibration levels are quantified using on-vehicle straight-line test data where strain-gauge transducers are placed in the tie-rod ends. Full vehicle kinematic and compliance tests are used to verify the total steering system stiffness levels. Frequency response tests are used to adjust tire cornering stiffness levels as well as the tire dynamic characteristics such that vehicle static gain and yaw natural frequency are achieved. On-center discrete sinusoidal on-vehicle tests are used to further validate the model.
Journal Article

Rubber Bushing Model for Vehicle Dynamics Performance Development that Considers Amplitude and Frequency Dependency

2015-04-14
2015-01-1579
In many cars, ride is less comfortable on smooth roads. This is because when the hysteresis in the suspension components rises steeply, the increase of the equivalent spring constant at small amplitude deteriorates the vibration isolation of the suspension. Therefore suspension components should be designed to prevent a steep rises in hysteresis. Investigating the influence of hysteresis, component models, which can reproduce such hysteresis characteristics, should be installed with model parameters in the vehicle model. Using conventional methods, these parameters can be accurately identified if measurement data is provided; however, it is difficult at the earlier phase of vehicle development. Then, if conflicting performances, such as ride and handling, are to be improved, both should be considered concurrently as early in a phase of vehicle development as possible and the design specifications for suspension components should be determined to satisfy both performances.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

Development of a Compact Ultra-Flat Torque Converter Equipped with a High-Performance Damper

2015-04-14
2015-01-1088
By optimizing parameters related to damping performance and adopting a layout that incorporates the turbine into the damper components, a “Turbine Twin-Damper” lock-up damper was developed that achieves both damping performance and compactness. To reduce losses in the fluid flow channel, a smaller torus was developed that reduce the width of the torus by about 30%.Through the combination of this Turbine Twin-Damper and smaller torus, attenuation of the torque fluctuation transmitted to the transmission to 1/2 or less compared to a conventional product was achieved without increasing the overall width of the torque converter. As a result, the engine speed at cruise fell by 400rpm, and fuel economy improved.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
X