Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Journal Article

Extension of Lean Burn Range by Intake Valve Offset

2013-10-15
2013-32-9032
Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC). The outward-laid intake valve also increased the clearance from the exhaust valve, which enabled use of a large-diameter intake valve to minimize the reduction of maximum power.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Journal Article

Development of New Toyota D-Series Turbocharger for GD Diesel Engine

2015-09-01
2015-01-1969
There is increasing demand for highly functional diesel engine turbochargers capable of meeting Euro 6 emissions regulations while improving dynamic performance and fuel economy. However, since these requirements cannot be easily satisfied through refinements of existing technology, Toyota Motor Corporation has developed the new D-series turbocharger for initial installation in its GD diesel engine. The higher efficiency and wider operation range of the new turbocharger enabled the amount of the turbine flow capacity to be reduced by 30%, while helping to improve dynamic response and fuel economy. The mechanism causing the generation of fuel deposits in the fuel injection system upstream of the turbocharger, which was adopted for compliance with emissions regulations, was analyzed and fundamental countermeasures were applied. The result is a new highly functional turbocharger with greatly enhanced reliability.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

2016-04-05
2016-01-0607
Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method.
Journal Article

Combustion Development to Realize High Thermal Efficiency Engines

2016-04-05
2016-01-0693
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society, and an effective way of accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. Cooled EGR has the potential to achieve further lower fuel consumption if the EGR ratio can be increased. Fast combustion is an important and effective way for expanding the EGR ratio. The engine combustion enhancement can be categorized into measures to improve ignition characteristics and methods to promote flame propagation.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Journal Article

Development of Paint Booth: “New Paint Mist Collection Method”

2016-04-05
2016-01-1258
1 Inside a paint booth to spray paint on vehicle bodies, bumpers, and other parts (hereinafter referred to as “works”), air whose temperature and humidity are controlled by air-conditioner is supplied by blower fans through filters. Dust-eliminated and regulated air flow is sent downward from top to bottom (hereinafter referred to as “downflow”) in the painting booth. Conventionally, paint which does not adhere to work in spraying (hereinafter referred to as “paint mist”) is collected while flowing at a high speed through a slit opening called venturi scrubber in a mixture of air and water. However, this mist collecting system using venturi scrubber requires a large space with a large amount of pressure loss while consuming substantial energy. By radically changing the mist collecting principle, we developed a new compact system with less pressure loss aiming to reduce energy consumption by 40% in a half-size booth.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
X