Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Next Generation Power and Thermal Management System

2008-11-11
2008-01-2934
The power and thermal management system (PTMS) developed by Honeywell for aircraft is an integral approach combining the functions of the auxiliary power unit (APU), emergency power unit (EPU), environmental control system (ECS), and thermal management system (TMS). The next generation PTMS discussed in this paper incorporates the new more electric architecture (MEA) and energy efficient aircraft (EEA) initiatives. Advanced system architectures with increased functionality and further integration capabilities with other systems are included. Special emphasis is given to improvements resulting from interactions with the main engine, main electric power generation, and flight actuation. The major drivers for advancement are highlighted, as well as the potential use of new technologies for turbomachinery, heat exchangers, power electronics, and electric machines. More advanced control and protection algorithms are considered.
Technical Paper

An Electric Power Generation System for Launch Vehicles

2006-11-07
2006-01-3061
Launch vehicles that use electric actuators for thrust vector or flight control require a safe, reliable and lightweight source of electrical power. Honeywell, working with NASA Glenn Research Center and Lockheed Martin Space Systems, has developed and successfully tested a turbine-driven electric power generation system which meets these needs. This Turbine Power Unit (TPU) uses hydrogen and oxygen propellants which react catalytically to drive a shaft-speed turboalternator mounted on foil bearings. A high-reactance permanent-magnet machine (HRPMM) was selected for this application. The power conditioning and control electronics can be located within the TPU housing and the hydrogen fuel can be used to pressurize the bearings and electronics and to regeneratively cool the machine. A brassboard unit incorporating many of these features was successfully tested at output power levels from 0 to 138 kilowatts (kW).
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Speed Control Method for Turboelectric Power Generation Systems

2008-11-11
2008-01-2902
In association with NASA Glenn Research Center and Lockheed Martin Space Systems, Honeywell has developed and successfully tested an electric power generation system that uses non-toxic hydrogen and oxygen propellants that are reacted catalytically. The resulting fuel-rich gases drive a turbogenerator. Speed control of this system is challenging due to highly variable electric load profile. Discrete two-position valves were used to control the propellant flow for improved reliability compared to proportional valves. This “bang-bang” speed control method exhibits variation in turbine acceleration and deceleration with load. The control thresholds for the turbine speed are adjusted based on load so as to compensate for increased speed overshoot and undershoot.
Technical Paper

Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

2009-07-12
2009-01-2401
Recovery of potable water from wastewater is essential to the success of long-duration human missions to the moon and Mars. Honeywell International and a team from the NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, which is referred to as the cascade distillation subsystem (CDS), uses an efficient multistage thermodynamic process to produce purified water. A CDS unit employing a five-stage distiller engine was designed, built, and delivered to the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing; an initial round of testing was completed in fiscal year 2008 (FY08). Based, in part, on FY08 testing, the system is now in development to support an Exploration Life Support Project distillation comparison test that is expected to begin in 2009.
Technical Paper

Development of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2001-07-09
2001-01-2332
The International Space Station (ISS) internal thermal control system (ITCS) has been developed jointly by the Boeing Corporation, Huntsville, Alabama, and Honeywell Engines & Systems, Torrance, California, to meet ISS internal thermal control needs. The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first module, the US Laboratory Module, was launched in February 2001 and is now operational on the ISS. The dual loop system is comprised of a low-temperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a three-way mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, a pump bypass assembly (PBA), and a heat exchanger.
Technical Paper

Control System Development for Automotive PEM Fuel Cell Vehicles

2001-08-20
2001-01-2548
Honeywell Engines and Systems (E&S) Environmental Control Systems (ECS) division has been developing a 50 kW proton exchange membrane (PEM) fuel cell brassboard system for automotive application as part of a U.S. Department of Energy (DOE) program. A primary issue in the development of the brassboard is the automatic control of the system. A preferred DOE requirement is dynamic load following from idle to peak power. Since the PEM stacks require precise inlet condition control for both the air and fuel to achieve high efficiency, the control system must provide good dynamic tracking and low steady-state error over the entire operating range. In addition, the controller must provide automatic system start-up and shutdown, built-in-test (BIT) to monitor key system parameters, and take corrective action if those parameters reach an unsafe condition. The purpose of this paper is to present the control system design approach taken by the authors to achieve those goals.
Technical Paper

Innovations in Laser Welding of Thermoplastics: This Advanced Technology is Ready to be Commercialized

2002-07-09
2002-01-2011
Previously we reported to the SAE 2000 basics in selection of various colored and un-colored/natural nylon 6 (polyamide - PA 6) based plastics for laser welding technology. Later we presented to Antec1 2001 and to SAE 2002 our developments of colored in black through-transmissible grades of PA 6 plastics, which were specially tailored for the specifics of the design and laser welding technology. In this current paper, we will try to enhance the understanding of the engineering community regarding the usefulness and applicability of laser welding technology, developed colored thermoplastics, and its increasing use in various automotive and transportation applications.
Technical Paper

Smart Structure and Integrated System: Reinforced Nylon and Aluminum Self-Tapping Screws

2002-07-09
2002-01-2030
Previously we reported to SAE 2002 the basic principles in materials selections for the fastening of plastics. In this current paper, we will try to increase the understanding of the automotive community regarding the usefulness and applicability of aluminum made self-tapping screws in the fastening of various thermoplastic components. Utilization of the light alloys for the manufacturing of fasteners for plastic applications allowed us to manage efficiently the stiffness considerations, short- and long-term performance of the assembled plastic components. The results presented in this study will help designers, technologists, thermoplastic and fastener developers and fastener manufacturers, to optimize mechanical performance of assembled automotive components, where self-tapping screws will be used.
Technical Paper

Innovations in Laser Welding Technology: State of the Art in Joining of Thermoplastics and Advances with Colored Nylon for Automotive Applications

2002-03-04
2002-01-0716
Previously we reported to the SAE'99 our findings on selections of nylon (polyamide) based plastics for laser welding (LW) technology. In this current paper, we will try to increase the understanding of the engineering community regarding the usefulness and applicability of an advanced LW technology (and developed thermoplastics), and its increasing use in various automotive applications.
Technical Paper

Reinforcement Challenges and Solutions in Optimized Design of Injection Molded Plastic Parts

2003-03-03
2003-01-1123
The mechanical performance of injection molded glass-fiber reinforced plastic parts is highly anisotropic and depends strongly on the kinetics (orientation and distribution) of the glass-fiber and the part geometry. Similarly, the bulk and local mechanical performance at the ribs, walls and welds is influenced by these glass-fibers and the specific processing technology (including joining) used, as related to melt-flow and melt-pool formation and glass-fiber re-orientation. The purpose of this study is to show: the effect of short glass-fiber orientation at the pre-welded beads, ribs and wall areas for injection molded and subsequently welded parts the short-term mechanical performance of welded butt-joints that have various geometry and thickness, namely “straight” and “T-type” welds.
Technical Paper

Honeywell's Automotive Door Latch Design is Ideal for Corporate Latch Strategy

2003-03-03
2003-01-1190
In response to consumer demand, automakers are adding more safety, security, and convenience features to vehicle access control systems. Also, in a continuing effort to be more profitable, automakers are reducing costs by outsourcing the design of systems/sub-systems/components, reducing their supply base, and minimizing part numbers by sharing components across several platforms. In an attempt to improve efficiency and productivity, many OEM's have adopted a “corporate latch” strategy, implementing the same latch across several manufacturing platforms and marketing divisions. Honeywell's revolutionary door latch design efficiently and cost effectively addresses vehicle OEMs' current and future requirements for performance and functionality.
Technical Paper

A Selected Operational History of the Internal Thermal Control System (ITCS) for International Space Station (ISS)

2004-07-19
2004-01-2470
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001.
Technical Paper

Ersatz Wastewater Formulations for Testing Water Recovery Systems

2004-07-19
2004-01-2448
This paper addresses the derivation of chemical ersatz recipes for use in the evaluation of development hardware designed for advanced spacecraft water recovery systems. The recipes simulate characteristics of wastewater generated on a transit mission and on an early planetary base (EPB). In addition, recipes are provided which simulate the water quality of the early planetary base wastewater as it moves through a combination biological and physical-chemical water recovery system. These ersatz are considered to be accurate representations of the wastewater as it passes through primary, secondary, and tertiary processing stages. The EPB ersatz formulas are based on chemical analyses of an integrated water recovery system performance test that was conducted over a period of one year. The major inorganic and organic chemical impurities in the raw wastewater, and in the effluent from the various subsystems, were identified and quantified.
Technical Paper

International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Troubleshooting and Evaluation

2004-07-19
2004-01-2548
An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past three years, the CDRA system has operated with varying degrees of success.
Journal Article

Advanced Electric Drives for Aerospace More Electric Architectures

2008-11-11
2008-01-2861
This paper discusses the problem of obtaining electric machines (EM) for advanced electric drives (AED) used in more electric architecture (MEA) applicable to aircraft, spacecraft, and military ground vehicles. The AED are analyzed by those aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost CTQ are addressed to develop a balance among them, resulting in an optimized system. The influence of machine controllers and system considerations is discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are considered. A methodology for electric machine selection is demonstrated. An example of high-speed, high-performance machine application is shown. A system approach is used for overall electric machine selection and optimization.
X