Refine Your Search

Topic

Author

Search Results

Journal Article

Connected Car Architecture and Virtualization

2016-04-05
2016-01-0081
Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
Journal Article

Ensuring Audio Signal Quality in Automotive Infotainment Systems

2013-04-08
2013-01-0163
In automotive infotainment systems, multiple types of digital audio signals are usually present. Some come from internal sources, such as a CD or USB stick, and some come from external sources, such as an internet stream or digital radio. These sources usually have different sample-rates, and may also be different from one or more system sample-rates. Managing and transporting these signals throughout the system over different sample-rate domains require detailed upfront architecture analysis and correct system design to ensure signal quality is maintained to the desired level. Incorrect design can add significant user-perceivable noise and distortion. This paper examines the key analysis factors, the effects of poor design and the approaches for achieving robust signal handling and ensuring desired signal quality.
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

Control Method of Dual Motor-Based Steer-by-Wire System

2007-04-16
2007-01-1149
This paper describes a front road wheel steer-by-wire system with two actuator motors on the rack and pinion assembly to move the road wheels. Dual actuators are used to provide actuator redundancy and to enhance the fault tolerance capability. When one actuator faults or fails, the other actuator is designed to work independently and maintain full system performance. The paper emphasizes control method to implement the motion control for the front road wheel steer-by-wire system with two actuators on the common load. The proposed dual servo synchronization motion control implements the angle tracking for the road wheel reference input by controlling two actuators synchronously and cooperatively. It includes two servo feedback control loops to track the common reference input. The angular position error between two feedback loops is compensated using a synchronized compensator.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

Human Factors Flight Test Evaluation of an Airport Surface Display with Indications & Alerts (SURF IA)

2010-09-30
2010-01-1663
This paper presents the results of a human factors flight test evaluation of a display of Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA). The study is an element of the FAA-sponsored Surface Conflict Detection and Alerting with Consideration of Arrival Applications program. The objective of the flight test was to conduct a comparative evaluation of two candidate SURF IA displays: a detailed Airport Surface Situation Awareness (ASSA) display and a runways-only Final Approach Runway Occupancy Awareness (FAROA) display. Six pilots with a current Air Transport Pilot Certificate each completed 18 scenarios. A Beechcraft King Air C-90 and a Cessna Citation Sovereign aircraft were deployed for the flight tests. The scenarios were conducted at Seattle-Tacoma International Airport and at Snohomish County Paine Field Airport, with each aircraft acting as ‘traffic’ for the other aircraft.
Technical Paper

Improving Load Regeneration Capability of an Aircraft

2009-11-10
2009-01-3189
This paper presents new concepts for improving management of the electrical load power regeneration of an aircraft. A novel electrical system that allows for load regeneration back to the distribution bus is described. This approach offers the benefits of reduced weight, volume, and cost, as well as improved reliability. Also described is an electrical machine control mechanism that creates motor power to run the prime mover (i.e., the main engine to dissipate the regenerated power). Instead of main engine generation, this approach can be applied to an auxiliary power unit (APU) or power and thermal management system (PTMS). Background information regarding the regeneration concept is presented. The concept definition and the various modes of operation of the improved system are analyzed and described in detail. Results from the dynamic simulation of the system model are included.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Pressure Signal

2003-10-27
2003-01-3266
MBT timing for an internal combustion engine is also called minimum spark timing for best torque or the spark timing for maximum brake torque. Unless engine spark timing is limited by engine knock or emission requirements at a certain operational condition, there exists an MBT timing that yields the maximum work for a given air-to-fuel mixture. Traditionally, MBT timing for a particular engine is determined by conducting a spark sweep process that requires a substantial amount of time to obtain an MBT calibration. Recently, on-line MBT timing detection schemes have been proposed based upon cylinder pressure or ionization signals using peak cylinder pressure location, 50 percent fuel mass fraction burn location, pressure ratio, and so on. Because these criteria are solely based upon data correlation and observation, both of them may change at different engine operational conditions. Therefore, calibration is still required for each MBT detection scheme.
Technical Paper

Finite Element Model Correlation of an Automotive Propshaft with Internal and External Dampers

2004-03-08
2004-01-0862
In the absence of prototypes, analytical methods such as finite element analysis are very useful in resolving noise and vibration problems, by predicting dynamic behavior of the automotive components and systems. Finite Element Analysis (FEA) is a simulation technique and involves making assumptions that affect analytical results. Acceptance and use of these results is greatly enhanced through test validation. In this paper, dynamic behavior of the automotive propshaft equipped with cardboard liner and torsional damper is investigated. The finite element model is validated at both component and subsystem levels using frequency response functions. Effects of the cardboard liner and torsional damper on the propshaft bending, torsional and breathing frequencies are studied under free-free boundary conditions. Effects of the U-Joint stiffness along with other design variables on the driveshaft dynamic behavior are also studied.
Technical Paper

Stability Control of Combination Vehicle

2001-03-05
2001-01-0138
This paper discusses the development of combination vehicle stability program (CVSP) at Visteon. It will describe why stability control is needed for combination vehicles and how the vehicle stability can be improved. We propose and evaluate controller structures and design methods for CVSP. These include driver's intent identification, combination vehicle status estimation and control, and fault detection / tolerance. In this paper, the braking and steering dynamics of car-trailer and tractor-semitrailer combinations, and the brake systems which should be used extensively to increase the stability of combination vehicles are presented. Also our development platform is introduced and the combination vehicle simulation results are presented. The definition of combination vehicles in this paper includes car-trailer and commercial tractor-semitrailer combinations since their vehicle dynamics are based on the same equations of motion.
Technical Paper

Power Steering Pump with Enhanced Cold Start Priming

2001-04-30
2001-01-1422
The objective of the present work was to improve the cold start NVH performance of an automotive power steering pump under low temperature conditions. This objective was accomplished through the use experimental study and measurement. The satisfactory operation of a fixed displacement vane pump in cold temperatures depends on a number of factors including; (1) filling characteristics, (2) the inlet conditions to the pump, (3) the fluid, and (4) the ability of the vanes to maintain contact with the cam surface. In this investigation, factor (4) was chosen for investigation. A unique outlet orifice was designed and tested at three different operating ambient temperatures, -19 °C, -29 °C, and -40 °C. Maximum “noise” duration was measured as the maximum duration of fluid borne pump outlet pressure oscillations greater the 345 kPa peak-to-peak. The results show that noise duration can reduced by as much as 50% at -40 °C.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

Instrument Clusters for Electric Vehicles

2001-03-05
2001-01-3959
Environmental concerns and changes in regulations around the world are turning mass-production electric vehicles (EVs) a reality. While the average driver is very familiar with the instruments available for the current internal combustion engine vehicles (ICEVs), the same does not hold for EVs. They require unique gages and tell-tales (also known as warning lights), tailored to their architecture, operating modes and intended use. This paper makes a comparison of the instruments used in ICEVs and EVs, suggesting a minimum set and standardization of the associated symbols.
Technical Paper

A Predictive Control Algorithm for an Anti-Lock Braking System

2002-03-04
2002-01-0302
Generalized predictive control (GPC) is a discrete time control strategy proposed by Clark et al [1]. The controller tries to predict the future output of a system or plant and then takes control action at present time based on future output error. Such a predictive control algorithm is presented in this paper for deceleration slip regulation in an automobile. Most of the existing literature on the anti-lock brake control systems lacks the effectiveness of the wheel lockup prevention when the automobile is in a skid condition (in a low friction coefficient surface with panic braking situation). Simulation results show that the predictive feature of the proposed controller provides an effective way to prevent wheel lock-up in a braking event.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

Environmental Systems Considerations for Aircraft Cabins During Ground Operation

2002-11-05
2002-01-2941
The quality of outside air during ground operations was analyzed by comparing airport and engine exhaust data to exposure limits and odor thresholds. The results indicated that the outside air may contain compounds in high enough concentrations to be odorous. If the odor is to be treated, the important design criteria that must be considered include the phase of compounds, compound type, location of treatment device on the aircraft, pressure drop, operating temperature, and maintenance interval. Finally, a control strategy is outlined that monitors the air quality as well as the efficiency of an air treatment system.
Technical Paper

The Mobile Wireless Ether - Finding Its Way Into the Automobile

2002-10-21
2002-21-0046
The application and usage of various wide-area (long range) to personal-area (short range) wireless technologies and associated services in automobiles has arrived. It is essential for implementers to understand the parameters and capabilities of these technologies, many of which utilize and depend upon remote data/information transport services across one or more physical and logical entities within an automobile. This dependence, coupled with unique and typically diverse operational characteristics and requirements of the various wireless technologies, presents significant integration challenges to the automotive OEM and systems/components providers. Investigating and providing insight into managing this complexity for currently and soon to be deployed wireless technologies is addressed in this paper.
X