Refine Your Search

Topic

Author

Search Results

Journal Article

Lateral Control for Automated Vehicle Following System in Urban Environments

2014-04-01
2014-01-0161
In contrast to highway, there are some sections not well maintained in urban roads. In these sections, there may be faint lane marks or static obstacles due to construction or some other reasons. Therefore, an automated vehicle following system such as traffic jam assistant should consider these sections to guarantee the safety of the system. In order to achieve this purpose, a model predictive control (MPC) scheme has been developed. The objectives of MPC are to compute the sequence of optimal steering input for vehicle following with obstacle avoidance. For this, the MPC uses the lead vehicle's state and obstacle's position obtained by lidars. For this purpose, a simplified nonlinear model of the vehicle was used to predict the future evolution of the system. Based on this prediction, performance index is optimized under operating constraints at each time step. A test vehicle equipped with two lidars on left and right corner of the front bumper has been developed.
Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Journal Article

Effect of Engine Oil Heater Using EGR on the Fuel Economy and NOx Emission of a Full Size Sedan during Cold Start

2016-04-05
2016-01-0656
In cold start driving cycles, high viscosity of the lubrication oil (engine oil) increases the mechanical friction losses compared with warmed up condition. Thus, an engine oil warm up system can provide the opportunity to reduce the mechanical friction losses during cold start. In this study, an engine oil heater using EGR is used for the fast warm up of the engine oil. This paper presents the effect of the engine oil heater on the fuel economy and emissions over a driving cycle (NEDC). A numerical model is developed to simulate the thermal response of the powertrain using multi-domain 1-D commercial powertrain simulation software (GT-Suite) and it is calibrated using test data from a full size sedan equipped with a 2.0L diesel engine. The model consists of an engine model, coolant circuit model, oil circuit model, engine cooling model, friction model, and ECU model.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Journal Article

Developing Mode Shift Strategies for a Two-Mode Hybrid Powertrain with Fixed Gears

2008-04-14
2008-01-0307
Two-mode hybrid architectures with three planetary gear sets and four clutches will bring both flexibility and complexity to energy management of powertrains. In order to take full advantage of the increased degrees of freedom, highly delicate operation strategies are needed. We develop transmission efficiency models for power-split modes, and present a mode shift strategy assuming no battery power. When battery load leveling is additionally considered, the respective optimal operation set for each mode can be obtained and compared to yield a mode shift algorithm for general hybrid operation situations. The investigation of the strategies shows how frequently each mode is used, and verifies the effectiveness of fixed gear operations. We check the validity of the strategies by applying the algorithm to dynamic optimization and by predicting how it works during an actual driving simulation.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Journal Article

A Development of the Fretting Fatigue Analysis Techniques for Engine Aluminum Block

2011-04-12
2011-01-0483
Periodically, engine block-bearing cap structure is subject to the mixed bearing load from combustion and inertia mass of crank. Recently, due to the trend of lightness, cast steel is replaced with aluminum in the material of gasoline engine block. And, the load acting on the main bearing cap is rapidly rising due to the increase of engine power. Therefore, in the development stage, fretting fatigue failures frequently occurred on the block face contacted with the bearing cap. Fretting is a kind of wear which is occurred by micro relative movement. Even though various researches have been made to investigate fretting fatigue failure with FEA approaches, they are not enough to evaluate the phenomenon. In this study, the new CAE method simulating the fretting fatigue failure on the engine block face is developed and the mechanism of the fretting fatigue on the engine block is investigated.
Journal Article

Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine

2018-04-03
2018-01-0212
As fuel injection strategies in spark-ignition (SI) engines have been diversified, inhomogeneous mixing of the fuel-air mixture can occur to varying extents during mixture preparation. In this study, we analyzed the effect of inhomogeneous mixing on the knocking characteristics of iso-octane and air mixture under a standardized fuel testing condition for research octane number (RON), based on ASTM D2699. For this purpose, we assumed that both lean spots and rich spots existed in unburned gas during compression stroke and flame propagation and calculated the thermodynamic state of the spots by using an in-house multi-zone, zero-dimensional SI engine model. Then, the ignition delay was measured over the derived thermodynamic profiles by using rapid compression machine (RCM), and we calculated ξ, the ratio of sound speed to auto-ignition propagation speed, based on Zel’dovich and Bradley’s ξ − ε theory to estimate knock intensity.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios

2007-08-05
2007-01-3630
Characteristics of syngas combustion at various reforming ratios were studied numerically. The syngas was formed by the partial oxidation of methane to mainly hydrogen and carbon monoxide and cooled to ambient temperature. Stiochiometric and lean premixed flames of the mixtures of methane and the syngas were compared at the atmospheric temperature and pressure conditions. The adiabatic flame temperature decreased with the reforming ratio. The laminar burning velocity, however, increased with the reforming ratio. For stretched flames in a counterflow, the high temperature region was broadened with the reforming ratio. The maximum flame temperature decreased with the reforming ratio for the stoichiometric case, but increased for the lean case except for the region of very low stretch rate. The extinction stretch rate increased with the reforming ratio, implying that the syngas assisted flame is more resistance to turbulence level.
Technical Paper

Fatigue Life Analysis of Automotive V-belt Pulley

2007-08-05
2007-01-3729
Fatigue life of a V-belt pulley, which is commonly used in automotive powertrain to transfer power to other parts, is predicted based on damage analysis by finite element analysis (FEA). Load conditions on pulley are analyzed by considering interactions among the pulley, V belt, bracket and bolts. Both normal force and traction force on the contact surfaces between the pulley and V belt were calculated. Assembly load due to the tightening of the bolts as well as operation load was considered to describe the actual load conditions in durability test. Static analysis at initial position of the pulley after assembly was performed with given load conditions. As the pulley rotated every ten degrees, consecutive static analyses were followed to find out the stress history of the pulley during operation. Using stress history data calculated from FE analysis, damage over one rotation of pulley was calculated and fatigue life, number of rotation to failure, was estimated.
Technical Paper

Three Types of Simulation Algorithms for Evaluating the HEV Fuel Efficiency

2007-04-16
2007-01-1771
In regard to the evaluation of the performance of a hybrid electric vehicle (HEV), there are as many simulation methods as there are developers or researchers. They adopt different operational algorithms and they use diverse techniques to realize their logic. However, the relation among the various simulation methods has not been clearly defined. Thus, it is not easy to choose a method that would bring the best consequences in the most efficient way. Here, we present three types of backward-looking simulation algorithms for evaluating the fuel efficiency of a power-split HEV. Then the results and cost-effectiveness of each algorithm are analyzed using various component ratings over a representative driving mode. Based on the comparative analysis, the algorithm that uses equivalent fuel consumption is shown to be highly cost-effective. Also, an inductive or empirical base is set up with the results for a component sizing methodology using the recommended simulation.
Technical Paper

An Effective Logical Wire Connection Verification Algorithm for Automotive Wiring System

2008-04-14
2008-01-1274
As the number of user selectable electrical modules increases for passenger car, the number of cars with different combinations of option can easily exceed 100,000 cars. It results to a situation where we can not manually verify all the logical connection by making wiring combinations for each car. In this paper, we propose an algorithm that can reduce verification time for all possible wiring with available option combinations. The algorithm separates the whole wiring circuits into independent circuits and verifies the logical connections for each independent circuit with all possible options. The algorithm is time effective so the required time to verify the connections increases logarithmically as the number of possible car increases. The algorithm was implemented as software verification tool and its effectiveness was proved to be feasible.
Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Application of Functional Design Method to Road Vehicle Aerodynamic Optimization in Initial Design Stage

2009-04-20
2009-01-1166
Exterior shape of automobile can be represented by shape function through this study so that aerodynamic shape parameters can be easily controlled and changed. Also ordinary geometric information can be extracted easily from shape function model by simple calculations. It is possible to predict the aerodynamic performance of functional virtual car models which are transformed continually by developing automated program in initial design stage that includes all of above process. Innovative vehicle design process with exterior design guide will be proposed for stylist, engineer and packaging department in order to achieve low aerodynamic drag and high fuel efficiency targets.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Digital Elderly Human Body Modeling

2009-06-09
2009-01-2262
An anatomically detailed elderly human body model is under development. Using the anthropometric database of domestic nation-wide size survey, SizeKorea, a standard size and shape of 50th %tile elderly was constructed. Through the local recruitment process, a male volunteer with 71 years of age, 163cm of height and 63kg of weight has been selected. The exterior (skin) geometries were acquired from whole body 3D laser scan. And the geometries of interior (skeleton and organ) were reconstructed using CT scanning in a supine posture, and then adjusted in an occupant posture based on X-ray, and Ultrasonic data. A particular attention has been paid into the combining process of exterior and interior geometries especially for joint articulation positions since they were measured at different postures (sitting vs. supine).
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
X