Refine Your Search

Topic

Search Results

Technical Paper

Multi-Mode Controller Design for Active Seat Suspension with Energy-Harvesting

2020-04-14
2020-01-1083
In this paper, a multi-mode active seat suspension with a single actuator is proposed and built. A one-DOF seat suspension system is modelled based on a quarter car model of commercial vehicle with an actuator which is comprised of a DC motor and a gear reducer. Aiming at improving ride comfort and reducing energy consumption, a multi-mode controller is established. According to the seat vertical acceleration and suspension dynamic travel signals, control strategies switch between three modes: active drive mode, energy harvesting mode and plug breaking mode.
Journal Article

Computational Evaluation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector

2012-09-10
2012-01-1652
The capabilities of various numerical models to accurately account for the onset and development of cavitation in diesel injector nozzles is assessed and evaluated. The numerical predictions of the models are computed, and are compared to measured experimental data and observations. The numerical predictions for actual diesel nozzle geometry have been validated with experimental measurements of the total vapor mass flow rate. This vapor flow is found to be developed along the nozzle length due to the nucleation of the cavitation bubbles inside the diesel injector. The cavitation inception criteria that is used for the quantitative cavitation calculations included vapor quality, voidage, cavitation kinetic energy and cavitation energy. The results indicate that the cavitation simulation model predicts a diffused and gradual vapor distribution inside the nozzle in agreement with the experimental data.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

The Effect of Friction on Ride Comfort Simulation and Suspension Optimization

2020-04-14
2020-01-0765
The design of suspension affects the vehicle dynamics such as ride comfort and handling stability. Nonlinear characteristics and friction are important characteristics of suspension system, and the influence on vehicle dynamic performance cannot be ignored. Based on the seven-degree-of-freedom vehicle vibration nonlinear model with friction, the vibration response process of the vehicle and the influence of suspension friction on vehicle ride comfort and suspension action process were studied. The results show that friction will significantly affects the simulation of ride comfort and coincide with the function of the shock absorber. The suspension shock absorbers of vehicles were optimized with and without suspension friction. The results showed that the suspension tended to choose softer shock absorbers when there was friction. However, both of the two optimizations are able to improve the ride comfort of vehicles, and the simulation results were similar.
Technical Paper

Optimization Study on Coolant-flow for Heavy-duty Vehicle Diesel Engine by Experiment Study & Numerical Simulation

2007-08-05
2007-01-3628
Problems such as higher heat load in the diesel engine and the occurrence of crazes within the valve bridge of heavy-duty vehicle diesel engine should be solved, with the increase of the power density of heavy-duty vehicle diesel engine. In this paper, the heat load experiment of complete machine, temperature-measuring of bottom part of cylinder head and the three-dimension numerical simulation on coolant flow and heat transfer in the water jacket have been performed. The result shows that the main reasons of higher heat load of the engine are insufficiency of heat-sinking capability of the water-radiator and shortage of coolant flux; and the unsuitable flow field in water jacket in cylinder head, where only a little of the coolant can cool the bottom of cylinder head, is the main cause of cylinder head bottom over-heated and thermal crack in the valve-bridge region.
Technical Paper

A Diesel Engine Real time NOx Emission Simulation System Based on RTW and VxWorks

2007-01-23
2007-01-0025
Lower engine emission is an important target in the evaluation of the control strategy of ECU. So the hardware in the loop simulation system (HILSS) including emission model is necessary. In this paper, a NOx emission neural network (NN) model is constructed based on the reflection relationship between the NOx formation and some direct influence factors such as concentration of oxygen, combustion temperature, combustion period. Combined with a nonlinear dynamic diesel engine model based on the filling and emptying methods, the NOx emission NN model can reach the trade-off between simulation accuracy and computational overhead. A new HILS platform based on Matlab/RTW and VxWorks real time operating system is introduced in the paper. The graphic programming and automatic code generating methods also developed to accelerate the development of HILSS.
Technical Paper

Prototyping Hardware-in-the-loop Simulation System of Diesel Engine on Linux System with Automatic Code Generation

2008-06-23
2008-01-1735
Faced with the need to reduce development time and cost, the hardware-in-the-loop simulation increasingly proves to be an efficient tool in the development of automotive engine control system. In this article, the rapid prototyping technology is used to develop a hardware-in-the-loop simulation system for the diesel engine electronic control unit development. The hardware-in-the-loop simulation presented in this paper is based on Linux RTAI system, an open source hard real-time extension of the Linux Operating System, at low costs and within industrial standards. It exploits standard x86-based computing platforms provided with real-time Linux software in combination with generic computer-aided design software (Matlab/Simulink). One of its main characteristics is that it can automatically generate the real-time simulation code for many target processors, which runs under Linux RTAI operating system.
Technical Paper

Detailed Simulation of Liquid DME Homogenization and Combustion Behaviors in HCCI Engines

2008-06-23
2008-01-1705
The homogenization of fuel, air, and recycled burnt gases prior to ignition as well as detailed intake, spray, combustion and pollution formation processes of Homogeneous charge compression ignition (HCCI) engine with liquid Dimethyl ether (LDME) fuel are studied by coupling multi-dimensional computational fluid dynamic KIVA-3Vr2 code with detailed chemical kinetics. An extended hydrocarbon oxidation reaction mechanism including 81 species and 362 elementary reactions used for (HCCI) engine fueled with (LDME) fuel was constructed and studded at different engine conditions by using CHEMKIN software and then a validating reduced mechanism that can be used in a modeling strategy of 3D-CFD/chemistry coupling for engine simulation is introduced to meet the requirements of execution time acceptable to simulate the whole engine physicochemical process including intake, spray, compression and combustion process.
Technical Paper

Improved Quasi-dimensional Spray Combustion Model in DI Engine with Detailed Chemistry

2008-06-23
2008-01-1604
In this paper, a quasi-dimensional multi-zone spray combustion model is developed to simulate the combustion and emission of direct injection engine fueled with dimethyl ether (DME). The analysis of the spray mixing process is based on a quasi-dimensional gas jet model which consists of integral continuity and momentum equations. The heterogeneous field of temperature and temporal distribution histories of fuel in the combustion chamber is considered by dividing the chamber into n-zones. The jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone and the combustion process is controlled by chemical reactions which are calculated by adopting CHEMKIN code. The CHEMKIN libraries have been used to formulate a stiff chemical kinetic solver suitable for integration within the engine cycle simulation.
Technical Paper

Experimental and theoretical study on the swirl exhaust system for diesel engines

2000-06-12
2000-05-0162
On the basis of modular pulse converter (MPC) exhaust system the authors present a new swirl exhaust system. Structural parameters on the swirl exhaust system and MPC system for N8160ZC diesel engine were calculated by a mathematical optimum method, and the two systems were tested under the same engine operation for comparison. Experimental results show that the swirl exhaust system has a better engine performance under most of the operating conditions than MPC system, but worse under the low-speed and part-load conditions. In order to understand the mechanism of this swirl exhaust system well, a three-dimensional particle dynamic analyzer (3D-PDA) was utilized to measure the steady turbulent airflow in a swirl three-branched model. The computational fluid dynamics (CFD) code KIVA was modified to simulate the flows. Computational results are in good agreement with measuring ones and reveal the swirl flow behavior in the junction.
Technical Paper

Genetic Algorithms for the Vibroacoustic Optimization of the Stamped Rib in a Plate

2004-03-08
2004-01-1160
The result of rib stiffening is the redistribution of natural frequencies and mode shapes of the plate, which can significantly alter its noise and vibration character. In this paper, genetic algorithms are used as a promising tool for sound radiation minimization problems. The objective of the study is to determine effective, general design methods for determining the optimal dimensions of the stamped rib in a plate to minimize the total radiated acoustic power. Acoustic response under broad-band excitation is considered. Radiated sound power is calculated using a boundary element method, in conjunction with a finite element solver for the solution of the structural problem.
Technical Paper

Simulation of Transient Heat Transfer for Coupling 3-D Moving Component System Within Internal Combustion Chamber

2003-03-03
2003-01-0617
Transient heat transfer computer program of the coupling 3-D moving piston assembly-lubricant film-liner system is successfully developed for predicting the distribution of temperatures in the component system, in which the finite element technology has been employed. The heat transfer relation of the moving piston assembly-lubricant film-liner has been established and 3-D discrete model of the system is obtained with the hypothesis of thinking the lubricant film as 1-D heat resistance. The discrete models of single component are assembled into the whole coupling model with the coupling theory. Some appropriate ways have been employed to deal with the moving arrays in the stiffness matrix because of the moving boundary conditions. The software has been employed to analyze a gasoline engine.
Technical Paper

Mount Model Dependent on Amplitude and Frequency for Automotive Powertrain Mounting System

2017-03-28
2017-01-0405
Three constitutive models which capture the amplitude and frequency dependency of filled elastomers are implemented for the conventional engine mounts of automotive powertrain mounting system (PMS). Firstly, a multibody dynamic model of a light duty truck is proposed, which includes 6 degrees of freedom (DOFs) for the PMS. Secondly, Three constitutive models for filled elastomers are implemented for the engine mounts of the PMS, including: (1) Model 1: Kelvin-Voigt model; (2) Model 2: Fractional derivative Kelvin-Voigt model combined with Berg’s friction; (3) Model 3: Generalized elastic viscoelastic elastoplastic model. The nonlinear behaviors of dynamic stiffness and damping of the mounts are investigated. Thirdly, simulations of engine vibration dynamics are presented and compared with these models and the differences between common Kelvin-Voigt model and other constitutive models are observed and analyzed.
Technical Paper

Parameter Sensitivity Analysis of a Light Duty Truck Steering Returnability Performance

2017-03-28
2017-01-0428
Steering returnability is an important index for evaluating vehicle handling performance. A systematic method is presented in this paper to reduce the high yaw rate residue and the steering response time for a light duty truck in the steering return test. The vehicle multibody model is established in ADAMS, which takes into consideration of the frictional loss torque and hydraulically assisted steering property in the steering mechanism, since the friction, which exists in steering column, spherical joint, steering universal joint, and steering gear, plays an important role in vehicle returnability performance. The accuracy of the vehicle model is validated by road test and the key parameters are determined by executing the sensitivity analysis, which shows the effect of each design parameter upon returnability performance.
Technical Paper

In-Plane Parameter Relationship between the 2D and 3D Flexible Ring Tire Models

2017-03-28
2017-01-0414
In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
Technical Paper

Extension of O'Rourke Droplet Collision Model: Application to Diesel Spray of Single-hole Injector

2006-10-16
2006-01-3335
Currently, the most widely used droplet collision model is O'Rourke's algorithm. However, it has large mesh dependency in spray simulations. The calculated results have different spray structures in different meshes and the predicted mean drop sizes increase with the mesh resolution. The predicted mean drop size can increase 30 microns from the coarsest mesh to the finest one. There are two reasons for this. Firstly, the O'Rourke model does not consider the collision between parcels that reside at the edges of two adjacent cells. Secondly, it assumes the probability of a pair of parcels colliding is proportional to their relative velocity. The result of this assumption is that parcels furthest apart from each other in a cell are most likely to collide because they have the greatest relative velocity. In order to reduce mesh dependency, a new model, called CMC (cross mesh collision), is proposed. It is an extension of the O'Rourke droplet collision model.
Technical Paper

Cooperative Game Approach to Merging Sequence and Optimal Trajectory Planning of Connected and Automated Vehicles at Unsignalized Intersections

2022-03-29
2022-01-0295
Connected and automated vehicles (CAVs) can improve traffic efficiency and reduce fuel consumption. This paper proposes a cooperative game approach to merging sequence and optimal trajectory planning of CAVs at unsignalized intersections. The trajectory of the vehicles in the control zone is optimized by the Pontryagin minimum principle. The vehicle's travel time, fuel consumption, and passenger comfort are considered to construct the joint cost function, completing the optimal trajectory planning to minimize the joint cost function. Analyzing the different states between neighboring CAVs at the intersection to calculate the minimum safety interval. The cooperative game approach to merging sequence aims to minimize the global cost and the merging sequence of CAVs is dynamically adjusted according to the gaming result. The multi-player games are decomposed into two-player games, to realize the goal of the minimal global cost and improve the calculation efficiency.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Technical Paper

Dynamic Characteristics Analysis of Brake System for Heavy-Duty Off-Highway Vehicle

2004-10-26
2004-01-2638
Analysis of pressure transients in brake system is very important for calculating brake force development, especially for vehicles mounted on ABS (Antilock braking system). This paper introduces an analytical dynamic model of the air-over-hydraulic (AOH) brake system mounted on heavy-duty off-highway vehicle (HOV). The paper relies on physical arguments to develop the mathematic models for the brake system components. And then a generalized AOH brake system, based on the systems analysis level for the components, is formulated in detail. The foundation drum brake is presented with a novel modeling method for the interaction with the apply system. And the pipeline hysteresis and fluid fluctuation of the brake system are well researched. Experiments are preformed on a bench setup and a real vehicle of the AOH brake system and the experimental data is compared with the simulation results. Preliminary analysis shows that the simulation tracks the data closely.
Technical Paper

Automated Vehicle Path Planning and Trajectory Tracking Control Based on Unscented Kalman Filter Vehicle State Observer

2021-04-06
2021-01-0337
For automated driving vehicles, path planning and trajectory tracking are the core of achieving obstacle avoidance. Real-time external environment perception and vehicle state monitoring play the important role in the decision-making of vehicle operation. Sensor measuring is an important way to obtain vehicle state parameters, but some parameters cannot be measured due to sensor cost or technical reasons, such as vehicle lateral velocity and side-slip angle. This disadvantage will adversely affect the monitoring of vehicle self-condition and the control of vehicle running, even it will lead to erroneous decision-making of vehicles. Therefore, this paper proposes an automated driving path planning and trajectory tracking control method based on Kalman filter vehicle state observer. Some of vehicle state data can be measured accurately by sensors.
X