Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Multi-dimensional Simulation of Air/Fuel Premixing and Stratified Combustion in a Gasoline Direct Injection Engine with Combustion Chamber Bowl Offset

2006-11-13
2006-32-0006
A multidimensional numerical simulation method was developed to analyze air/fuel premixing, stratified combustion and NOx emission formation in a gasoline direct injection (GDI) engine. Firstly, many submodels were integrated into one Computational Fluid Dynamics (CFD) code: ICFD-CN, such as Sarre nozzle flow, Kelvin-Helmholtz (KH) dynamic jet model, Taylor-Analogy Breakup (TAB) model, Rayleigh-Taylor (RT) droplet breakup model, Lefebvre fuel vaporization model, Liu droplet drag & distortion model, Gosman turbulence & droplet dispersion model, O'rourke wall film model, O'rourke and Bracco droplet impinging & coalescence model, Stanton spray/wall impinging model, the Discrete Particle Ignition Kernel(DPIK)ignition model, the single step combustion and the patulous Zeldovich model for NOx generation mechanism. The integrated CFD code was then calibrated against experimental data in a gasoline direct injection engine for several engine operating conditions.
Technical Paper

Analysis to the Impact of Monolith Geometric Parameters on Emission Conversion Performance Based on an Improved Three-way Catalytic Converter Simulation Model

2006-11-13
2006-32-0089
This paper describes an improved mathematical model to study the emission conversion effectiveness of a three-way catalytic converter, which employed detailed chemical reaction mechanism. The model also accounts for adsorption/release of oxygen in the catalyst monolith under non-stoichiometric A/F conditions. A commercial CFD code FLUENT was utilized to solve the governing equations for flow and pressure drop and to simulate the transient process in a three-way catalytic converter in a multi-dimensional manner. A comparison between simulation results and experimental data for a three-way catalyst was conducted and a good agreement was observed. Based on the improved model, some geometric parameters were studied for an elliptic monolith catalyst, which are widely used in today's converter systems because of its advantages in packaging.
Technical Paper

Modeling and Analysis of Microwave Regeneration Process in Wall-Flow Diesel Particulate Filter

2012-04-16
2012-01-1289
To meet more stringent emission regulations for diesel engines, diesel particulate filters (DPF) have been widely used for diesel engines. However, the DPF regeneration is a great challenge for fuel economy. In this paper, a mathematical model characterizing the microwave regeneration process of a wall-flow particulate filter is introduced to better understand the process. Based on this model, important parameters such as evolutions of the energy stream densities of microwaves, wall temperature, regeneration efficiency and the pressure drop in the filters, both cordierite and SiC, are investigated. These results can provide an important theoretical guide for optimizing and controlling the microwave regeneration process.
Technical Paper

Simulation and Experimental Research on Compression Release Engine Brake Performance

2018-04-03
2018-01-1382
A 3D grid model of engine brake is established for an automobile engine. The dynamic compression release braking process is simulated by using this model. In the process of engine braking, the movement of valve and piston causes changes of the internal flow field of the engine. In this paper, the movement of valve and piston were defined by using the dynamic grid technology, so that the numerical simulation is closer to the actual situation via the updating of grid. Based on the relevant parameters of compression release engine brake (including the opening of the exhaust valve, the engine speed and the exhaust back pressure), the pressure and power of the compression release braking system were simulated under the conditions of multiple operating conditions and experimental verification was carried out. The results showed that the braking works of the compression release engine brake are mainly from the compression stroke and the exhaust stroke.
X