Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of the Defrost Performance Evaluation Technology in Automotive Using Design Optimization Analysis Method

2020-04-14
2020-01-0155
In this study, we developed the defrost performance evaluation technology using the multi-objective optimization method based on the CFD. The defrosting is one of the key factors to ensure the drivers’ safety using the forced flow having proper temperature from HVAC during drive. There are many factors affecting the defrost performance, but the configurations of guide-vane and discharge angles in the center DEF(defrosting) duct section which are main design factors of the defrost performance in automotive, so these were set to the design parameters for this study. For the shape-optimization study, the discharge mass flow rate from the HVAC which is transferred to the windshield and the discharge areas in the center defrost duct were set to the response parameters. And then, the standard deviation value of mass flow rate on the selected discharge areas checking the uniformity of discharge flow was set to the objective function to find the optimal design.
Journal Article

A Study on Fracture Characteristics of Plastics and Application to Head Impact Simulation for Instrument Panels

2008-04-14
2008-01-1116
The instrument panels are made to meet stiffness requirements and also interior safety regulation such as head impact test. Nowadays, CAE is widely used to predict the test results in advance. However, considering fracture phenomena, the characteristics of material takes a significant role for the simulation of the real tests. In this paper, high speed tensile tests and fracture tests of specimens representing typical stress-states were performed to make a fracture criterion of a plastic material (PC/ABS). The suggested method was validated by comparing simulation with test results.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Journal Article

Development of Nano Diamond Polymer Coating on Piston Skirt for Fuel Efficiency

2011-04-12
2011-01-1401
Various polymer-based coatings are applied on piston skirt to reduce friction loss between the piston skirt and cylinder bore which is one of main factors of energy loss in an automotive engine system. These coatings generally consist of polymer binder (PAI) and solid lubricants (graphite or MoS₂) for low friction property. On the other hand, the present study found that PTFE as a solid lubricant and nano diamond as hard particles can be used to improve the low friction and wear resistance simultaneously. In the process of producing coating material, diamond particles pulverized to a nano size tend to agglomerate. To prevent this, silane (silicon coupling agent) treatment was applied. The inorganic functional groups of silane are attached to the nano diamond surface, which keep the diamond particles are apart.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Journal Article

Estimation of Lateral Force due to Lateral Disturbance for Application to an MDPS-Based Driving Assistant System

2011-04-12
2011-01-0977
This paper describes a lateral disturbance estimator for an application to a Motor Driven Power Steering (MDPS)-based driving assistant system. A vehicle motion can be disturbed laterally by wind force or load from bank angle acting on the vehicle in the lateral direction. An MDPS-based driving assistant system can be used to reduce steering effort of a human driver in a driving situation with lateral disturbance. In designing the MDPS-based driving assistant system, the lateral wind disturbance should be estimated to determine an assistant torque. An estimator for the vehicle lateral disturbance estimation has been developed. The proposed estimator consists of two parts: a tire self-aligning torque estimator and the lateral disturbance estimator. The lateral disturbance estimator has been designed on the basis of a 2-DOF bicycle model with available sensor signals from the MDPS module. A numerical simulation has been conducted in order to evaluate the proposed estimator.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Numerical Analysis for Evaluating the Cumulative Impact Damage of Automotive Bumpers

2007-04-16
2007-01-0687
We performed numerical analyses using an explicit code to evaluate the cumulative impact damage of an automotive front-end bumper during low-speed crash events, as described by CMVSS215. The CMVSS215 regulation consists of a series of test cases for the same parts. To evaluate the crash performance of a bumper, we used a coupled numerical analysis scheme and considered several matters such as the removal of residual vibrations and the evaluation of the bumper back beam recovery. We also used an EWK rupture model in the PAM-CRASH code to improve our damage and fracture estimates. Tensile test experiments were conducted to tune the performance of the EWK rupture model; the resulting material properties and fracture criterion were incorporated into the numerical analyses of the low-speed frontal crash events. The coupled analysis scheme was verified by comparing the output with bumper impact test data.
Technical Paper

Development of Durability Analysis Automation System(DAAS)

2007-04-16
2007-01-0949
Many automotive companies have recently introduced Virtual Product Development (VPD) techniques. The VPD helps engineers to reduce the number of design changes, speed up development time and improve product quality by utilizing CAE early in the design cycle before prototypes are ever created. In the VPD environment, however, simulation engineers inevitably perform a large number of analyses due to a number of design changes and validations of performance and reliability. In effect, the engineers have to follow many steps of analysis processes when using various kinds of simulation applications, which may require repetitious manual works such that it is easy to make mistakes. In an effort to solve these problems, automation software incorporating various types of analysis processes for automotive suspension components, DAAS (Durability Analysis Automation System) has been developed.
Technical Paper

Fatigue Strength Evaluation for the Leaf Spring of Commercial Vehicle Considering U Bolt Fixing Force

2007-04-16
2007-01-0853
Suspension system of vehicle is very important because it has an effect on ride comfort and safety. And the leaf spring is one of the major parts of commercial vehicle. By that reason it has to be designed to operate under severe condition to ensure enough endurance. But the traditional method for fatigue design needs repeated fatigue tests for each design according to its geometry, material, and operating condition. This means that a lot of time and money is needed for those tests. Thus, in this paper, a fatigue design method for leaf spring based on numerical analysis is proposed. At first, stress analysis is performed to get the stress under operation load or rig tests. And fatigue analysis is performed to get the fatigue life and to ensure the safety of leaf spring. Through this study, design parameters that play vital role in fatigue life of the leaf spring can be found out.
Technical Paper

The Numerical Study for the Adaptive Restraint System

2007-04-16
2007-01-1500
This paper is intended to find out the optimized restraint system for various crash conditions and to analyze the characteristics of those conditions numerically. 40km/h FF (Full Frontal crash), 56km/h FF and 64km/h ODB (Offset Deformable Barrier crash) conditions have been considered with 5th%ile female, 50th%ile male and 95th%ile male dummies on driver side. The vehicle lay out and crash pulses came from a compact passenger car. The restraint system was focused on the driver side airbag and seat belt. MADYMO 3D was used in this study for simulation.
Technical Paper

Development of High Wear Resistant and Durable Coatings for Al Valve Spring Retainer

2007-04-16
2007-01-1748
The use of light-weight materials in automotive engine components has increased in order to achieve better fuel efficiency and engine performance. In this study, Al alloy (AI5056) valve spring retainer can reduce a weight by 63% in comparison to steel and improve the upper limit of engine speed by about 500rpm. The Al valve spring retainer was fabricated by cold forging and coated with hard anodizing, DLC (diamond like coating), cold spray and thermal spray for better wear resistance and durability. We conclude that among these materials the DLC coating improves the wear resistance of Al valve spring retainer and has a sufficient durability after endurance testing.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Fatigue Life Estimation of Suspension Components using Statistical Method

2009-04-20
2009-01-0080
Depending on the scatter of material properties, geometrical shapes and load conditions, the fatigue life of mechanical components has wide range of scatter although they were tested under same conditions. This scatter is the main reason of different results between observed and predicted fatigue life. This study shows how to estimate the fatigue life distribution by analysis. Dominant factors for fatigue life distributions and their scatter could be obtained by comparing the analysis results and fatigue test results. Applying the scatter of these factors to fatigue analysis, it was possible to predict fatigue life distributions. This will improve the reliability of fatigue life estimation, therefore a more robust and reliable component design is possible.
Technical Paper

Correlation and Validation of Analytical Models for Vibration Fatigue Prediction of ABS Assembly Brackets

2010-04-12
2010-01-0503
ABS assembly is supported by the mounting bracket which is installed at the body inside engine room. Such feature of the mounting bracket requires consideration of durability performance under the dynamic random loads imposed by engine excitation. So, modal parameters, such as natural frequencies and mode shapes, of ABS assembly and its bracket should be considered when evaluating the fatigue life. Therefore, fatigue analyses and experiments of ABS assembly and its bracket were performed in the frequency domain rather than the time domain. After that, analysis results were compared and correlated with experimental results, and the analysis method was updated to improve analysis accuracy.
Technical Paper

Alternative Approach to Design ESC and MDPS Integrated Control System

2010-04-12
2010-01-0101
The integrated control system of Electronic Stability Control (ESC) and Motor-Driven Power Steering (MDPS) improves vehicle performance and extends functions via CAN network without any hardware modification. Although the ESC and MDPS integrated system does not improve vehicle behavior directly, it can inspire drivers to steer to the right direction by changing steering torque assistance characteristics. There are two different ways to control both ESC and MDPS systems: Top-down and Parallel control mode. First, the Top-down control mode, which is already widely used on the market, imposes ESC on the additional functions of ESC+MDPS integrated system. On the contrary, the Parallel control mode distributes the functions to ESC and MDPS, therefore each system does their own role and cooperates on special events. In this study, the parallel control mode controller is proposed and compared with the Top-down control mode.
Technical Paper

Accurate Shock Absorber Load Modeling in an All Terrain Vehicle using Black Box Neural Network Techniques

2002-03-04
2002-01-0581
This paper presents the results of a study of using a neural network black box model of a shock absorber of an ATV (All Terrain Vehicle, four wheel drive, off road, single person vehicle) for accurate load modeling. This study is part of a larger investigation into the dynamic behavior and associated fatigue of an ATV vehicle, which is conducted under the auspices of the Fatigue Design and Evaluation Committee of SAE of North America (www.fatigue.org). The general objectives are to develop new correlated methodologies that will allow engineers to predict the durability of components of proposed vehicles by means of a “digital prototype” simulation. Current state of the art multi body dynamics predictions use linear frequency response functions or non-linear polynomial approximations to describe the behavior of non-linear suspension components such as shock absorbers or bushings.
Technical Paper

A Practical Implementation of ASAM-GDI on an Automated Model Based Calibration System

2003-03-03
2003-01-1030
The paper addresses the connectivity issues related to integrating an Automated Model Based Calibration System (MTS Atlas) to a dynamometer test bed data acquisition system using an ASAM-GDI Interface. The GDI (Generic Device Interface) implementation was chosen over other ASAM interfaces due to its real-time capabilities and the ability to host new GDI drivers as these drivers become available. A structured migration process is developed showing how a new interface standard can be implemented that integrates with legacy test equipment, yet provides a simple low cost mechanism allowing replacement of old or redundant equipment.
Technical Paper

Development of Smart Shift and Drive Control System Based on the Personal Driving Style Adaptation

2016-04-05
2016-01-1112
In general, driving performance is developed to meet preference of average customers. But there is no single standardized guideline which can satisfy various driving tastes of all drivers whose gender, cultural background, and age are different. To resolve this issue, automotive companies have introduced drive mode buttons which drivers can manually select from Normal, Eco, and Sport driving modes. Although this multi-mode manual systems is more efficient than single-mode system, it is in a transient state where drivers need to go through troubles of frequently selecting their preferred drive mode in volatile driving situations It is also doubtful whether the three-categorized driving mode can meet complex needs of drivers.. In order to settle these matters, it is necessary to analyze individual driving style automatically and to provide customized driving performance service in real time.
X