Refine Your Search

Topic

Author

Search Results

Journal Article

Recent Advances in the Development of Hyundai · Kia's Fuel Cell Electric Vehicles

2010-04-12
2010-01-1089
Wide attention to fuel cell electric vehicles (FCEVs) comes from two huge issues currently the world is facing with: the concern of the petroleum reserves depletion due to consequent oil dependence and the earth global warming due in some extent to vehicle emissions. In this background, Hyundai, along with its sister company Kia, has been building the FCEVs and operating their test fleet with several tens of units at home and abroad. Since 2004, 32 passenger vehicles have been offered for the Department of Energy's controlled hydrogen fleet and infrastructure demonstration and validation project in the U.S. In the meantime, from 2006, 30 passenger vehicles as well as four buses, featuring the in-house developed fuel cell stack and its associated components, are currently under the domestic operation for the FCEV learning demonstration led by the Ministry of Knowledge and Economy.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Technical Paper

The Effects of Pilot Injection on Combustion in Dimethyl-ether (DME) Direct Injection Compression Ignition Engine

2007-09-16
2007-24-0118
Dimethyl-ether combustion with pilot injection was investigated in a single cylinder direct injection diesel engine equipped with a common-rail injection system. Combustion characteristics and emissions were tested with dimethyl-ether and compared with diesel fuel. The main injection timing was fixed to have the best timings for maximum power output. The total injected fuel mass corresponded to a low heating value of 405 joules per cycle at 800 rpm. The fuel quantity and the injection timing of the pilot injection were varied from 8 to 20% of the total injected mass and from 50 to 10 crank angle degrees before the main injection timing, respectively. Ignition delay decreased with pilot injection. The effects of pilot injection were less significant with DME combustion than with diesel. Pilot injection caused the main combustion to increase in intensity resulting in decreased emissions of hydrocarbons, carbon monoxide and particulate matter.
Technical Paper

Design and Structural Analysis of Bumper for Automobiles

1998-02-01
980114
An investigation has been performed to study the response of the front bumper beam of automobiles subjected to an external impact load. In the investigation, an aluminum shell structure is modeled as a beam, and the energy absorber of polyurethane is also modeled as statically equivalent springs attached to the beam. Castigliano's second theorem and principles of energy and momentum are then used to calculate the reaction forces and maximum deflection. Stress distribution is then calculated using the beam theory. The primary concern of the investigation is to present a procedure of how to design optimally the cross-sectional shape of the front bumper of automobiles.
Technical Paper

Generation of Robust and Well-Atomized Swirl Spray

2007-07-23
2007-01-1852
The spray characteristics of a swirl injector for direct-injection spark-ignition (DISI) engines were investigated for the generation of robust and well-atomized swirl spray. A highly-inclined tapered nozzle is applied as a test nozzle and the spray characteristics are compared with conventional nozzle and L-step nozzle. When the taper angle is 70°, an opened hollow cone spray is formed. This spray does not collapse with increasing fuel temperature and back pressure conditions. However, the taper angle should be optimized to avoid forming a locally rich area and to increase the spray volume. The droplet size of 70° tapered nozzle spray shows a value similar to that of the original swirl spray in the horizontal mainstream while it shows an increased value in the vertical mainstream. The deteriorated atomization characteristics of the tapered nozzle spray are improved by applying high fuel temperature injection without causing spray collapse.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

The Dual-Fueled Homogeneous Charge Compression Ignition Engine Using Liquefied Petroleum Gas and Di-methyl Ether

2007-08-05
2007-01-3619
The combustion, knock characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition operation fueled with liquefied petroleum gas with regard to variable valve timing and the addition of di-methyl ether. Liquefied petroleum gas was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of di-methyl ether was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions, combustion and knock characteristics. The optimal intake valve open timing for the maximum indicated mean effective pressure was retarded as the λTOTAL was decreased. The start of combustion was affected by the intake valve open timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Identification of Dynamic Behavior of Sheet Metals for an Auto-Body with Tension Split Hopkinson Bar

1998-02-01
981010
In order to evaluate the crash-worthiness of a car, the dynamic response of the car body has to be correctly obtained at each level of car velocity. For the dynamic analysis, the dynamic properties of auto-body materials need to be identified for various strain rates. One of the typical high strain rate tensile tests is a split Hopkinson bar test. The present experiment has been carried out with a new split Hopkinson bar apparatus specially designed for the dynamic tensile test of sheet metals. The experiment provides stress-strain curves for various strain rates ranged from 2500 to 5000/sec. The experimental results from the both quasi-static and dynamic test are used to construct the Johnson-Cook equation as a constitutive relation, which can be applied to simulate the dynamic behavior of auto-body structures.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

The Effect of Injection Location of DME and LPG in a Dual Fuel HCCI Engine

2009-06-15
2009-01-1847
Dimethyl ether (DME) as a high cetane number fuel and liquefied petroleum gas (LPG) as a high octane number fuel were supplied together to evaluate the controllability of combustion phase and improvement of power and exhaust emission in homogeneous charge compression ignition (HCCI) engine. Each fuel was injected at the intake port and in the cylinder separately during the same cycle, i.e., DME in the cylinder and LPG at the intake port, or vice versa. Direct injection timing was varied from 200 to 340 crank angle degree (CAD) while port injection timing was fixed at 20 CAD. In general, the experimental results showed that DME direct injection with LPG port injection was the better way to increase the IMEP and reduce emissions. The direct injection timing of high cetane number fuel was important to control the auto-ignition timing because the auto-ignition was occurred at proper area, where the air and high cetane number fuel were well mixed.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

2009-04-20
2009-01-1440
Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
X