Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine

2018-04-03
2018-01-0212
As fuel injection strategies in spark-ignition (SI) engines have been diversified, inhomogeneous mixing of the fuel-air mixture can occur to varying extents during mixture preparation. In this study, we analyzed the effect of inhomogeneous mixing on the knocking characteristics of iso-octane and air mixture under a standardized fuel testing condition for research octane number (RON), based on ASTM D2699. For this purpose, we assumed that both lean spots and rich spots existed in unburned gas during compression stroke and flame propagation and calculated the thermodynamic state of the spots by using an in-house multi-zone, zero-dimensional SI engine model. Then, the ignition delay was measured over the derived thermodynamic profiles by using rapid compression machine (RCM), and we calculated ξ, the ratio of sound speed to auto-ignition propagation speed, based on Zel’dovich and Bradley’s ξ − ε theory to estimate knock intensity.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Technical Paper

Design and Development of a Spray-guided Gasoline DI Engine

2007-08-05
2007-01-3531
Adopting the Spray-guided Gasoline Direct Injection (SGDI) concept, a new multi-cylinder engine has designed. The engine has piezo injectors at the central position of its combustion chamber, while sparkplugs are also at the center. The sparkplug location is designed so that the spark location is at the outer boundary of the fuel spray where the appropriate air-fuel mixture is formed. A few important operating parameters are chosen to investigate their effects on the combustion stability and fuel consumption. The final experimental results show a good potential of the SGDI engine; the fuel consumption rate was much less than that of the base Multi Port Injection (MPI) engine at various engine operating conditions.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Performance and Exhaust Emission in Spark Ignition Engine Fueled with Methanol-Butane Mixture

1800-01-01
871165
To improve the cold startability of methanol, methanol-butane mixed fuel was experimented. Engine performance and exhaust emissions are obtained with methanol-butane mixed fuel. These characteristics are compared with those of methanol and gasoline. The mixing ratios of methanol and butane are 50:50 (M50), 80:20 (M80), and 90:10 (M90) based on the calorific value. As a result, M90 produces more power than gasoline and more or less than methanol depending on the engine speed and the excess air ratio. Brake horse power of M90 is higher than that of gasoline by 5 - 10 %, and brake specific fuel consumption is smaller than that of gasoline by 17 % to the maximum based on the calorific value. NOx emission concentrations for M90 are lower than those for gasoline and higher than those for methanol because of the effect of butane, CO emission concentrations are somewhat lower than those for methanol and gasoline.
Technical Paper

Knock Prediction of Two-Stage Ignition Fuels with Modified Livengood-Wu Integration Model by Cool Flame Elimination Method

2016-10-17
2016-01-2294
Livengood-Wu integration model is acknowledged as a relatively simple but fairly accurate autoignition prediction method which has been widely recognized as a methodology predicting knock occurrence of a spark-ignition (SI) engine over years. Fundamental idea of the model is that the chemical reactivity of fuel under a certain thermodynamic test condition can be represented by inverse of the acquired ignition delay. However, recent studies show that the predictability of the model seems to deteriorate if the tested fuel exhibits negative temperature coefficient (NTC) behavior which is primarily caused by two-stage ignition characteristics. It is convincing that the cool flame exothermicity during the first ignition stage is a major cause that limits the prediction capability of the integration model, therefore a new ignition delay concept based on cool flame elimination is introduced in order to minimize the thermal effect of the cool flame.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

Optimal Rear Suspension Design for the Improvement of Ride Comfort and Suspension Noise

2012-04-16
2012-01-0975
The purpose of this paper is to identify and reduce a knocking noise from a rear suspension. First, the characteristics of a knocking noise are analyzed experimentally in the frequency domain. It was found that the knocking noise of a passenger room and vibration at a lower arm, a subframe and a floor are strongly correlated. Second, the knocking noise sensitivity is strongly dependent on suspension dynamics characteristics. Moreover, the improvement of ride comfort and noise was achieved simultaneously based on simulation analysis, principle vehicle testing. A design parameter study shows that the trailing arm bush stiffness, shock absorber bump/rebound damping characteristics, floor stiffness and shock absorber insulator bushing are one of the most sensitive parameter to affect the suspension knocking noise. Finally, this paper shows how the suspension knocking noise and ride comfort can be improved considering handling performance.
Technical Paper

Diesel/Gasoline Dual Fuel Powered Combustion System based on Diesel Compression Ignition Triggered Ignition Control

2013-04-08
2013-01-1718
The author's new approach, diesel and gasoline dual fuel powered combustion system based on diesel CI triggered ignition control, provides not only how key ideas extracted from LTC concept could be established in a small bore HSDI turbocharged diesel engine but also which mechanism works to bring almost same benefits as we have experienced in both conventional diesel combustion and LTC based advanced combustion systems like HCCI, PCCI and PPCI combustions. The combustion system presented in the paper physically combines both mixing controlled diesel compression ignition combustion and gasoline premixed charge combustion in one power generation cycle. Gasoline fuel in the system is provided by the conventional gasoline PFI system firstly into the cylinder in which premixed charge spreads out. In compression stroke, the exact amount of diesel fuel is injected into the highly diluted EGR ambient with premixed gasoline charge.
Technical Paper

A Study of Flame Propagation for Different Combustion Chamber Configurations in an SI Engine

1997-02-24
970876
High speed natural light motion picture records synchronized with head gasket ionization probe and in-cylinder pressure data have been made in the transparent engine of different combustion chamber configurations. For knocking cycles, the head gasket ionization current method simultaneously taken with pressure data was able to find the location of knocking occurrence. To investigate the effects of combustion chamber configurations, the flame propagation experiments for pent-roof combustion chamber with center ignition ( Modified Type I engine ) and modified pent-roof ( Type II engine ) combustion chamber were performed with high speed natural light photography technique. The flame propagation of Modified Type I engine represents more uniform patterns than that of Type II engine. The investigation of knocking combustion was also made possible by observing flame propagation with the measuring techniques that use head gasket ionization probe and in-cylinder pressure data.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

Improvement of Knock Onset Determination Based on Supervised Deep Learning Using Data Filtering

2021-04-06
2021-01-0383
Regulations regarding vehicles’ CO2 emissions are continuing to become stricter due to global warming. The CO2 regulations urge automobile manufacturers to develop gasoline engines with improved efficiency; however, the main obstacle to the improvement is the knock phenomenon in spark-ignition engines. If knock is predicted, the efficiency potential can be maximized in an engine by applying modest spark timing. Several research regarding knock prediction modeling have been conducted, and typically Livengood-Wu integral model is used to predict the knock occurrence. For the prediction, knock onset should be determined on a given pressure signal of given knock cycles for establishing the 0D ignition delay model. Several methodologies for knock onset determination have been developed because checking all the knock onset position by hand is impossible considering the breadth of data sets.
Technical Paper

Smart Engine Control Strategy for the Fuel Efficiency Improvement via Understanding the Unique Behavior of TWC

2019-03-25
2019-01-1406
The worldwide fuel economy compliance level has been tightening, at the same time, LEV-III/Euro-6d/China-6/BS-6 regulations for NMOG and NOx emissions are being introduced or already effective. Therefore, intensive research effort has been conducted in order to improve the fuel efficiency of passenger cars and reduce exhaust emission. In response to these demands, turbocharged gasoline direct injection (TGDI) engine is being introduced for gasoline vehicles in consideration of fuel efficiency improvement, high output and driving performance compared to naturally aspirated (NA) engine. However, due to its larger thermal mass from the turbo hardware in the exhaust, it suffers from the cold-start emission. The main hazardous gases emitted from gasoline vehicles are CO, HC and NOx, and a three-way catalyst (TWC) is installed for the purification of these harmful emissions.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%

2017-10-08
2017-01-2229
The maximum thermal efficiency of gasoline engine has been improving and recently the maximum of 40% has been achieved. In this study, the potential of further improvement on engine thermal efficiency over 40% was investigated. The effects of engine parameters on the engine thermal efficiency were evaluated while the optimization of parameters was implemented. Parameters tested in this study were compression ratio, tumble ratio, twin spark configuration, EGR rate, In/Ex cam shaft duration and component friction. Effects of each parameter on fuel consumption reduction were discussed with experimental results. For the engine optimization, compression ratio was found to be 14, at which the best BSFC without knock and combustion phasing retardation near sweet spot area was showed. Highly diluted combustion was applied with high EGR rate up to 35% for the knock mitigation.
X