Refine Your Search

Topic

Search Results

Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

A Study of Emissions Reduction through Dual-Fuel Combustion with Propane in a Compression Ignition Engine

2013-10-14
2013-01-2669
Novel Diesel combustion concepts such as premixed charge compression ignition (PCCI) and reactivity controlled compression ignition (RCCI) promise lower NOx and PM emissions than those of conventional Diesel combustion. RCCI, which can be implemented using low-reactivity fuels such as gasoline or gases and high-reactivity fuels such as Diesel, has the potential to achieve extremely low emissions and improved thermal efficiency. However, to achieve RCCI combustion, a higher boost pressure than that of a conventional engine is required because a high EGR rate and a lean mixture are necessary to achieve a low combustion temperature. However, higher boost pressures can cause damage to intake systems. In this research, the addition of gaseous fuel to a CI engine is investigated to reduce engine emissions, mainly NOx and PM emissions, with the same IMEP level. Two different methods were evaluated.
Technical Paper

Vehicle Cabin Air Quality with Fractional Air Recirculation

2013-04-08
2013-01-1494
A fractional recirculation of cabin air was proposed and studied to improve cabin air quality by reducing cabin particle concentrations. Vehicle tests were run with differing number of passengers (1, 2, 3, and 4), four fan speed settings and at 20, 40, and 70 mph. A manual control was installed for the recirculation flap door so different ratios of fresh air to recirculated air could be used. Full recirculation is the most efficient setting in terms of thermal management and particle concentration reduction, but this causes elevated CO₂ levels in the cabin. The study demonstrated cabin CO₂ concentrations could be controlled below a target level of 2000 ppm at various driving conditions and fan speeds with more than 85% of recirculation. The proposed fractional air recirculation method is a simple yet innovative way of improving cabin air quality. Some energy saving is also expected, especially with the air conditioning system.
Technical Paper

Control of Diesel Catalyzed Particulate Filter System I (The CPF System Influence Assessment According to a Regeneration Condition)

2005-04-11
2005-01-0661
Environmental standards concerning Suspended Particulate Matter (SPM) are continuously becoming stricter. The light-duty diesel passenger car market is rapidly increasing due to performance improvements and the economic advantages of the diesel engine. To meet EURO 4 diesel passenger car emission regulations, regeneration experiments of a catalyzed particulate filter (CPF) system have been performed with 2.0L common-rail diesel engine. For effective regeneration of the CPF system, we investigated the effects of various regeneration conditions on the system. Conditions such as exhaust gas temperature, oxygen/hydrocarbon concentrations, gas compositions, etc. were investigated. We found that the regeneration efficiency was improved when the exhaust gas temperature increased to more than 700°C during CPF regeneration using engine post injection. An additional amount of post injection increased the exhaust gas temperature and residual hydrocarbon content.
Technical Paper

Tumble Flow Measurements Using Three Different Methods and its Effects on Fuel Economy and Emissions

2006-10-16
2006-01-3345
In-cylinder flows such as tumble and swirl have an important role on the engine combustion efficiencies and emission formations. In particular, the tumble flow which is dominant in current high performance gasoline engines has an important effect on the fuel consumptions and exhaust emissions under part load conditions. Therefore, it is important to understand the effect of the tumble ratio on the part load performance and optimize the tumble ratio for better fuel economy and exhaust emissions. First step in optimizing a tumble flow is to measure a tumble ratio accurately. In this research the tumble ratio was measured, compared, and correlated using three different measurement methods: steady flow rig, 2-Dimensional PIV (Particle Image Velocimetry), and 3-Dimensional PTV (Particle Tracking Velocimetry). Engine dynamometer test was also conducted to find out the effect of the tumble ratio on the part load performance.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

2005-04-11
2005-01-1688
A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

Optimal Route Planning Algorithm Based on Real Traffic Network

2005-04-11
2005-01-1600
In order to perform the Optimal Route Planning avoiding traffic congestion, the structural elements (Rode type, Link type, Facilities type, Lane number, Turning type) in digital map and real-time traffic information are required. However, subjectively tuned cost weights of these elements, non theoretical relationship, and partially supported real-time traffic information that are mostly used for this implementation are not enough to satisfy. Therefore, in this research, by analyzing the relationship between the previously acquired traffic information history for some period of time and elements in digital map, we introduce the reasonable traffic information model that makes to estimate the speed information. Including the estimated speed, all the important factors of map database and the driver's preference, finally we made the cost model.
Journal Article

A Study on the Improvement of EV One-Pedal Driving System Interface and Cost Reduction

2022-03-29
2022-01-0645
In this study it will show, big data analysis and user survey of driving records were conducted to investigate frequency of use and ease of operation of the regen paddle to control one-pedal driving system in electric vehicle. According to 3.8 million driving record big data analysis result, it was found that the driver manipulates 3.31 times on average during a single trip, mainly during the early stages of driving. According to user observation research result in 41.8% of participants did not used or used less than 5 time of regen paddle during one single trip. Also 336 participants, which occupy 83%, responded that the regen paddle manipulation for one-pedal driving was inconvenient. In conclusion, because of the use frequency of the regen paddle is low and the operation of regen paddle is inconvenient. It seems necessary to change the design of the regen paddle.
Technical Paper

Customer Complaints Analysis Using Textmining Method

2022-03-29
2022-01-0131
In recent years, the automobile industry has been making efforts to develop vehicles that satisfy customers' emotions rather than malfunctions. The Vehicle Dependability Study(VDS) has been strengthened emotion items since the introduction of the new evaluation system VDS3 from 2015. The ratio of emotion items increased from 11% to 25%. In order to clarify the problem and cause of emotion items, we analyzed verbatim which is the customers' complaint data provided by J.D power every year, but it was difficult to extract customers' intention because the number of verbatim is small and expressed in terms of customer’s term rather than engineer’s term. To solve the problem, we are additionally colleting big data such as internet, warranty, online survey. Since the amount of data is very large, we developed textmining techniques such as dictionary, topic, Support Vector Machine(SVM), n-gram to improve process.
Technical Paper

Engine Sound Quality Development Using Engine Vibration

2018-06-13
2018-01-1487
Automotive companies are trying to enhance the customer’s impression by improving engine sound quality. The target of this sound quality is to create a brand sound that is preferred by their customers as well as quietness of interior noise. Over the past decade there have been many studies in the field of automotive sound quality. These have included the technologies such as tuning of intake orifice and exhaust orifice, tuning of structure-borne, intake feedback devices, active exhaust valves, ANC (Active Noise Cancellation) and ASD (Active Sound Design). The three elements of the sound that affect the feeling of the customer are known as engine order arrangement, frequency balance, and linearity. Here, the most important thing in sound quality development is the order arrangement.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

A Study on the Urea-Water Solution Dosing Strategy by NO/NOX Ratio of DeNOX SCR System

2015-03-10
2015-01-0057
In this study, SCR system is employed to selectively reduce NOX that is a major cause of environmental pollution from diesel engines. In particular, this paper focuses on urea injection strategies dependent on NO/ NOX ratio. An injection control algorithm is developed based on the chemical ratio between the amount of engine out NOX data obtained from Engine Management System (EMS) and the amount of NH3. Therefore, in order to decide the amount of injection quantity, the NO/NOX ratio from the engine out NOX should be considered in order to minimize NH3 slip while maximizing NOX reduction. Experiments are conducted with a 2.2-liter diesel engine for passenger vehicles with Diesel Oxidation Catalyst (DOC) and Diesel Particle Filter (DPF). Real time control, using Pulse Width Modulation (PWM) duty ratio for dosing module and supply module, is performed by real time computer with its injection control algorithm developed in the Matlab Simulink environment.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

2019-06-05
2019-01-1511
In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
X