Refine Your Search

Topic

Author

Search Results

Journal Article

Active Booming Noise Control for Hybrid Vehicles

2016-04-05
2016-01-1122
Pressure variation during engine combustion generates torque fluctuation that is delivered through the driveline. Torque fluctuation delivered to the tire shakes the vehicle body and causes the body components to vibrate, resulting in booming noise. HKMC (Hyundai Kia Motor Company)’s TMED (Transmission Mounted Electric Device) type generates booming noises due to increased weight from the addition of customized hybrid parts and the absence of a torque converter. Some of the improvements needed to overcome this weakness include reducing the torsion-damper stiffness, adding dynamic dampers, and moving the operation point of the engine from the optimized point. These modifications have some potential negative impacts such as increased cost and sacrificed fuel economy. Here, we introduce a method of reducing lock-up booming noise in an HEV at low engine speed.
Journal Article

Development of Noise Propensity Index (NPI) for Robust Brake Friction

2017-09-17
2017-01-2529
A semi-empirical index to evaluate the noise propensity of brake friction materials is introduced. The noise propensity index (NPI) is based on the ratio of surface and matrix stiffness of the friction material, fraction of high-pressure contact plateaus on the sliding surface, and standard deviation of the surface stiffness of the friction material that affect the amplitude and frequency of the stick-slip oscillation. The correlation between noise occurrence and NPI was examined using various brake linings for commercial vehicles. The results obtained from reduced-scale noise dynamometer and vehicle tests indicated that NPI is well correlated with noise propensity. The analysis of the stick-slip profiles also indicated that the surface property affects the amplitude of friction oscillation, while the mechanical property of the friction material influences the propagation of friction oscillation after the onset of vibration.
Journal Article

Development of Fatigue Durability Analysis Techniques for Engine Piston using CAE

2009-04-20
2009-01-0820
A piston in a diesel engine is subject to the high pressure and the high thermal load. The high structural reliability is required to the piston in the automotive diesel engine and it is important to confirm the design parameters of piston in initial design stage. There are lots of research works proposing new geometries, materials and manufacturing techniques for engine pistons. But, the failures of piston occur frequently in development stage. Failure mechanisms are mainly fatigue related. This paper presents failure mechanisms of the high cycle fatigue and low cycle thermal fatigue cracks which occur on the piston during durability test using engine dynamometer. In this study, FE analysis was carried out to investigate the root cause of piston failure. The analysis includes the FE model of the piston moving system, temperature dependent material properties, mechanical and thermal loadings.
Journal Article

The Prediction of Fuel Sloshing Noise Based on Fluid-Structure Interaction Analysis

2011-05-17
2011-01-1695
Fuel sloshing noise is involved with flow motion inside fuel tanks as well as structural characteristics of vehicles. Therefore it is necessary to introduce Fluid-Structure Interaction (FSI) analysis to predict sloshing noise phenomena more accurately. Purposes of this paper are to verify the reliability of the FSI method and suggest new CAE analysis processes to predict fuel sloshing noise. The vibration of floor panels induced by sloshing impact is evaluated through FSI analysis. A series of tests is carried out to validate simulation results. The numerical optimization of parameters is also carried out to reduce computation time. In addition, effects of sloshing noise factors are discussed based on simulation and test results. Lastly, a method to predict fuel sloshing noise by exerting sloshing load on a vehicle is suggested.
Journal Article

Research for Brake Creep Groan Noise with Dynamometer

2012-09-17
2012-01-1824
This paper deals with creep groan noise in vehicles which is a low frequency vibration problem at 20∼500Hz that appears in low brake pressures and extremely low speed especially in automatic transmission car, where there is a transition from static to dynamic condition. The vibration causing the noise is commonly thought to result from friction force variation between brake disc and pad in stick-slip phenomena. Simulation results are confirmed through dynamometer testing. Then presented noise contribution factor analysis by experimental approach between chassis components.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Test Method Development and Understanding of Filter Ring-off-Cracks in a Catalyzed Silicon Carbide (SiC) Diesel Particulate Filter System Design

2008-04-14
2008-01-0765
As the use of diesel engines increases in the transportation industry and emission regulations tighten, the implementation of diesel particulate filter systems has expanded. There are many challenges associated with the design and development of these systems. Some of the key robustness parameters include regeneration, efficiency, fuel penalty, engine performance, and durability. One component of durability in a diesel particulate filter (DPF) system is the filter's ability to resist ring-off-cracking (ROC). ROC is described as a crack caused primarily by thermal gradients, differentials, and the resulting stresses within the DPF that exceed its internal strength. These cracks usually run perpendicular to the substrate flow axis and typically result in the breaking of the substrate into separate halves.
Technical Paper

An Optimization of Dual Continuously Variable Valve Timing for Reducing Intake Orifice Noise of a SI Engine

2008-04-14
2008-01-0892
For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, various types of system for variable valve timing were developed by many automotive researchers. In this paper, we investigated the relationship between valve timing and intake orifice noise, and suggested how to improve NVH (Noise, Vibration and Harshness) performance as well as engine torque. Some experiments using the engine dynamometer were carried over about 150 different operating conditions. BEM analysis was also conducted in order to calculate acoustic modes of intake system. The results show that the valve timing and overlap of breathing systems have influence on NVH behavior, especially intake orifice noise over whole range of operating conditions. Valve timing and overlap of intake and exhaust valve were optimized in the view of sound quality as well as overall noise level.
Technical Paper

Reduction of Interior Booming Noise for a Small Diesel Engine Vehicle without Balance Shaft Module

2009-05-19
2009-01-2121
Applying BSM (Balance shaft module) is a very common and effective way to reduce the 2nd-order powertrain vibration which is caused by the ill-balanced inertia force due to the oscillating masses inside an engine. However, the adoption of a BSM can also produce undesirable things especially in cost, fuel economy, starting performance, and so on. Therefore, for small vehicles, in which case cost and weight are key factors at the development stage, it is often required to develop competitive NVH performance without the expensive apparatus like a BSM. In this paper, in order to develop interior noise and vibration of a 4-cylinder vehicle without a BSM, we analyzed the contribution of some transfer paths for powertrain vibration, and could reduce interior booming noise by tuning the dynamic characteristic of the engine mount which was one of the largest transfer paths.
Technical Paper

A Study on the Optimization of Body Structure for Rattle Noise by Exciting Woofer Speakers

2009-05-19
2009-01-2110
With the recent development of technologies for interpreting vibration and noise of vehicles, it has become possible for carmakers to reduce idle vibration and driving noise in the phase of preceding development. Thus, the issue of noise generation is drawing keen attention from production of prototype car through mass-production development. J. D. Power has surveyed the levels of customer satisfaction with all vehicles sold in the U.S. market and released the Initial Quality Study (IQS) index. As a growing number of emotional quality-related items are added to the IQS evaluation index, it is necessary to secure a sufficiently high quality level of low-frequency speaker sound against rattle noise. It is required to make a preceding review on the package tray panel, which is located at the bottom of the rear glass where the woofer speakers of a passenger sedan are installed, the door module panel in which the door speakers are built.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Numerical Study of Combustion Processes and Pollutant Formation in HSDI Diesel Engines

2004-03-08
2004-01-0126
The Representative Interactive Flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot and NOx formation. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the Eulerian Particle Flamelet Model using the multiple flamelets has been employed. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on turbulence-chemistry interaction.
Technical Paper

Effects of VGT and Injection Parameters on Performance of HSDI Diesel Engine with Common Rail FIE System

2002-03-04
2002-01-0504
Recently, high speed direct injection (HSDI) diesel engines are rapidly expanding their application to passenger cars and light duty commercial vehicles in western European market and other countries such as Korea and Japan. These movements are strongly backed by the technological innovations in the area of air charging and high pressure fuel injection systems. Variable geometry turbine (VGT) turbocharger, which could overcome the typical weak point of the existing turbocharged engine, and the common rail fuel injection system, which extended the flexibility of fuel injection capability, became two of the most frequently referred keywords in recent HSDI technology. In this paper some aspects of VGT potential as a full load torque and power modulator will be discussed. Possibility to utilize the portion of full load potential in favor of part load emissions and fuel economy will be investigated.
Technical Paper

Design Optimization Analysis of Body Attachment for NVH Performance Improvements

2003-05-05
2003-01-1604
The ride and noise characteristics of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning. This paper presents the procedure of body attachment stiffness analysis, which contains the correlation between experimental test and FEA. It is concluded that the most important factors are panel thickness, section type and mounting area size. This procedure makes it possible to find out the weak points before proto car and to suggest proper design guideline in order to improve the stiffness of body structure.
Technical Paper

Development of Input Loads for Road Noise Analysis

2003-05-05
2003-01-1608
To predict structure-borne interior noise using CAE simulation, it is important to establish a model for both the noise and vibration transfer path, as well as the excitation source. In the passenger vehicle, powertrain and road induced loads are major input sources for NVH. This paper describes a process to simulate the structure-borne road noise to 150Hz. A measured road surface is used for input for the simulation. Road surface data, in the form of height vs. distance, is converted to enforced motions at the tire patch in the frequency domain for input to the vehicle system model. The input loads are validated by the comparison of wheel hub excursions. The ability of the CAE simulation model to predict interior acoustic responses is shown by the comparison of the simulation results with measured vehicle interior responses.
Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

Reduction of Road Noise by the Investigation of Contributions of Vehicle Components

2003-05-05
2003-01-1718
The mobility technique is used to analyze the transfer functions of road noise between the suspension and the body structure. In the previous analyses, the suspension system and the body structure are altogether modeled as subsystems in the noise transfer path. In this paper, the mobility between the suspension and the body structure is analyzed by the dynamic stiffness at the connecting points. The measured drive point acceleration FRF at the connecting point in the transfer path was used to estimate the contributions of subsystems. The vibration modes of tire, the acoustic noise of tire's interior cavity, the vibration modes of the car's interior room, and the vibrations of body structure and the chassis are also considered to analyze the coupling effects of the road noise. Analyzing the measured results, direction for modification of car components is suggested.
Technical Paper

The Experimental Study on the Body Panel Shape to Minimize the Weight of the Damping Material

2003-05-05
2003-01-1715
The experimental study on the automotive body panel shape has researched a way to reduce the damping material. Among each differently designed panel shapes, the curved panel shape, with high rigidity, or dynamic stiffness, and uneven deformation mode, has found to most reduce the vibration energy and damping material application. This study shows how could the panel shape influence the NVH performance, which would be measured according to several specifically designed panel shapes in order to compare with the conventional bead panel. And this research proposes the way to optimize the damping material to minimize its weight.
Technical Paper

In-Cylinder Flow Field Analysis of a Single Cylinder DI Diesel Engine Using PIV and CFD

2003-05-19
2003-01-1846
We analyzed the in-cylinder flow fields of an optical-access single cylinder diesel engine with the PIV and STAR-CD CFD code. The PIV analysis was carried out in the bottom and side view mode during a compression stroke (ATDC 220°-340°) at 600 rpm. The flow pattern traced by the streamlines, the location of vortex center, the generation and disappearance of tumble, and the squish effect agreed well, as visualized by the PIV and CFD. Vorticity and spatial fluctuation intensities abruptly increased from ATDC 310, reflecting more complicated flow pattern as approaching TDC. In a quantitative sense, the velocity magnitudes obtained from the PIV were, on an average, higher than those from the CFD by 1 m/s approximately and the difference in velocity magnitude between them was about 26 %. In the CFD analysis, the standard high Reynolds κ-ε and RNG k-ε model were adopted for calculation with tetra and hexa or their hybrid meshes, to determine the turbulence model dependencies.
X